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Abstract

A nonparametric method for comparing multiple forecast models is developed
and implemented. The hypothesis of Optimal Predictive Ability generalizes the
Superior Predictive Ability hypothesis from a single given loss function to an en-
tire class of loss functions. Distinction is drawn between General Loss functions,
Convex Loss functions and Symmetric Convex Loss functions. The Optimal Pre-
dictive Ability hypothesis is formulated in terms of moment inequality conditions.
The empirical moment conditions are reduced to an exact and finite system of
linear inequalities based on piecewise-linear loss functions. The hypothesis can
be tested in a statistically consistent way using a blockwise Empirical Likelihood
Ratio test statistic. A computationally feasible test procedure computes the test
statistic using Convex Optimization methods and estimates conservative, data-
dependent critical values using a majorizing chi-square limit distribution and a
moment selection method. An empirical application to inflation forecasting re-
veals that a very large majority of thousands of forecast models are redundant,
leaving predominantly Phillips Curve type models, when convexity and symmetry
are assumed.
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1 Introduction

A classic problem in forecasting is the comparison of a multitude of models based on

different information sets and estimation methods. White (2000) and Hansen (2005) develop

the standard framework for testing the hypothesis of Superior Predictive Ability (SPA).

Regretfully, the relative accuracy of forecast models is often not robust to plausible

variation of the loss function. To obtain a robust classification, Jin, Corradi & Swanson

(2017) generalize the SPA hypothesis from a single given loss function to an entire class

of loss functions, using Stochastic Dominance (SD) orders. Their hypothesis of Stochastic

Dominance Superiority states that a given forecast model dominates all alternative models.

To test this hypothesis, they extend the Kolmogorov-Smirov type test of Linton, Maasoumi

& Whang (2005) to forecast model comparison.

Unfortunately, the discriminatory power of the Superiority criterion quickly falls as the

number of forecast models (M) increases and, inevitably, cases of non-dominance are intro-

duced. In terms of mathematical order theory, the partially ordered set generally has multi-

ple distinct ‘maximal elements’ (which are not dominated by any alternative) and hence no

‘greatest element’ (which dominates all alternatives).

The lack of discriminatory power is compounded by the minimal structure imposed on

the permissible loss functions. Two classes were distinguished: General Loss functions and

Convex Loss functions. These classes include a range of pathological loss functions which

can obscure the results for standard loss functions.

To improve the discriminatory power, the present study uses an alternative generalization

of the SPA hypothesis, which translates the criterion of SD Optimality (Fishburn (1974),

Bawa, Bodurtha, Rao & Suri (1985) and Post (2017)) to forecast comparison and which is

labeled here as Optimal Predictive Ability (OPA).

A given forecast is optimal if it minimizes expected loss for some permissible loss function.

Non-optimal forecasts are suboptimal for all loss functions and can therefore be discarded
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from the analysis. Importantly, a given forecast can be optimal without dominating al-

ternative forecasts and it can be non-optimal without being dominated, which introduces

additional power.

The SD Optimality criterion has been shown to reduce the number of choice alternatives

fromM to about
√
M in other application areas. As a case in point, in Bawa, Bodurtha, Rao

& Suri (1985), the optimal set consists of only 25 out of M = 896 New York Stock Exchange

stocks. Anderson & Post (2018) report similar set reductions for comparing multiple income

distributions.

Furthermore, a class of Symmetric Convex Loss functions is introduced. The additional

assumption of symmetry improves the discriminatory power upon the analysis based on

General Loss and Convex Loss functions. The Symmetric Convex Loss class includes the

standard Laplacian, Gaussian and Huber loss functions but excludes many pathological loss

functions. This class is shown to be closely related to standard Second-degree Stochastic

Dominance (SSD; Hadar & Russell (1969), Hanoch & Levy (1969) and Rothschild & Stiglitz

(1970)).

For each of the three classes of loss functions, the hypothesis of OPA is formulated using

moment inequality conditions, which opens the way for using moment-based estimation and

inference methods. Among these methods, Owen’s (1988, 1990, 1991) Empirical Likelihood

(EL) stands out as particularly promising for statistical inference about OPA.

EL and SD combine well due to a shared distribution-free assumption framework and

the discrete structure of the ‘implied distribution function’, which facilitates numerical op-

timization. The complementary relation between SD and EL was previously recognized by

Davidson & Duclos (2013), Davidson (2009), Post & Potì (2017), Post (2017) and Post,

Karabati and Arvanitis (2018) in the context of welfare analysis, asset pricing and portfolio

optimization.

In the area of forecast evaluation, the EL method has the additional advantage that

it does not require information about the forecast error covariance matrix and thus avoids
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problems with the estimation and manipulation of the covariance matrix when the number

of evaluated models is large. Similarly, Hansen (2005, p. 367) eschews quadratic-form test

statistics, to avoid these problems with the covariance matrix.

The loss function is treated as a partially identified, infinite-dimensional model parameter.

For practical application, a discrete representation is obtained using piecewise-linear loss

functions, in the spirit of Post (2003, Thm 2). Using this formulation, the empirical moment

conditions can be be formulated as an exact and finite system of linear inequalities.

A blockwise Empirical Likelihood Ratio (ELR) test statistic is used to test the moment

inequality conditions for time series data. The ELR statistic has important statistical opti-

mality properties (Kitamura (2001); Canay (2010)). The blockwise implementation allows

for a range of dynamic patterns, including common stationary ARMA, GARCH and stochas-

tic volatility processes (Kitamura (1997)).

The optimization problem that has to be solved to compute the ELR test statistic is

non-convex. A computational strategy is developed which alternates between one Convex

Optimization problem for estimation the loss function given the probabilities and another

Convex Optimization problem for estimating the probabilities given the loss function.

Conservative asymptotic critical values are derived using a majorizing chi-square limit

distribution and moment selection methods. The resulting testing procedure is statistically

consistent and asymptotically conservative.

The rest of this study is organized as follows. Section 2 illustrates the inferential frame-

work, comparing and contrasting alternative hypothesis structures, and provides a small

illustrative example. Section 3 delves further into the hypothesis structure of OPA, provides

the empirical specification of moment conditions implied by the null hypothesis of OPA

and illustrates the testing procedure. Section 4 derives its asymptotic properties under a

stationary and absolutely regular time series framework. Section 5 provides details on a

computational strategy that can be followed to carry out the test. Section 6 provides an

illustrative application to exchange rates forecasting, extending the empirical section in Jin,
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Corradi & Swanson (2017). Section 7 provides a larger scale application to inflation forecast-

ing, extending Hansen (2005) study, to illustrate how our approach generalizes tests of SPA

a la White (2000) and Hansen (2005) to a setting where the loss function is not parametric.

Section 8 concludes. The Appendix contains formal proofs along with auxiliary results and

further characterizations of the stochastic orders.

2 Theoretical Concepts

2.1 Forecast errors and loss functions

A random variable X is forecast usingM ≥ 2 distinct and given forecast models, generat-

ing point forecasts Y := (Y1 · · ·YM). The forecasts could be constructed, for example, using

predictive regression, analyst forecasts or market prices of securities. The forecast models

could also include forecast combinations of multiple base forecasts.

One of the models is compared with the other (M − 1) models. The models are indexed

such that the evaluated model takes the M -th position; the alternatives are collected in the

set I := {1, · · · ,M − 1}.

Alternatives i ∈ I which are dominated or non-optimal (as defined below) are irrelevant

for the analysis. It is recommended to detect and exclude such redundancies, if possible, to

increase statistical power and reduce the computer time. Since the number of optimal alter-

natives in earlier studies was roughly
√
M , the number of redundancies can be substantial.

The forecast errors of the models are given by E := (E1 · · ·EM), Ei := X − Yi, i =

1, · · · ,M . The joint cumulative distribution function (CDF) of the errors is denoted by

F : XM → [0, 1], where X := [a, b], −∞ < a < b < +∞.

Predictive ability is measured using expected loss EF [L(Ei)] based on a loss function

L : X → R+. The relevant class of permissible loss functions is denoted by L ∈ {L0,L1,L2}.

The class of General Loss functions, L0, contains all right-continuous loss functions which
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achieve a minimum at L(0) = 0 and do not decrease as the error moves away from zero. The

subset of Convex Loss functions L1 ⊂ L0 assumes also convexity: wL(E1) + (1−w)L(E2) ≥

L(wE1 + (1 − w)E2) and continuity at the boundary points. The Symmetric Convex Loss

functions L2 ⊂ L1 furthermore exhibit symmetry: L(E) = L(|E|). The latter class includes

the standard Laplacian, Gaussian and Huber loss functions.

The Symmetric Convex Loss class L2 is closely related to SSD. Specifically, U(x) :=

−L(−x), x ≤ 0, is an increasing and concave utility function and the minimization of

EF [L(E)] is equivalent to the maximization of EF [U (− |E|)] = −EF [L (|E|)], where U is

an increasing and concave utility function. OPA of the forecast error E of a given forecast

model for L2 thus corresponds to SSD optimality of the negative absolute forecast error

(−|E|) of the model.

For numerical reasons, the set of permissible functions can be reduced to piecewise-linear

functions with kinks at the atoms of the empirical distribution of the evaluated forecast

model. This set reduction does not affect the truth of the empirical moment condition, the

value of the test statistic or the estimated critical values; see Section 3.

2.2 Stochastic Dominance

In pairwise comparisons, model i ∈ I stochastically dominates modelM for loss function

class L, or Ei �L,F EM , if EF [L(EM)] ≤ EF [L(Ei)] for all L ∈ L; non-dominance occurs if

EF [L(EM)] > EF [L(Ei)] for some L ∈ L.

The distinction between strict and weak inequality is inconsequential for the present

analysis, and EF [L(Ei)] ≥ EF [L(EM )] can replace EF [L(Ei)] > EF [L(EM )] without harm.

This replacement would be prohibited if the loss functions were allowed to be constant on the

interior of the support of the evaluated model XM := [aM , bM ], in which case EF [L(EM )] = 0

and thus EF [L(Ei)] > EF [L(EM )] would become trivial.
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2.3 Admissibility, Optimality and Superiority

The concept of dominance can be extended in several distinct ways to a joint analysis

of all models. The three extensions also represent three distinct ways to generalize the SPA

hypothesis from a given loss function to the entire class of loss functions (L).

SD Admissibility occurs when the evaluated model is not dominated by any alternative,

∀i ∈ I,∃L ∈ L : EF [L(Ei)− L(EM )] > 0. This occurrence is equivalent to the following

condition:

A(L,F) : inf
i∈I

sup
L∈L

EF [L(Ei)− L(EM )] > 0. (1)

Using the terminology of mathematical order theory, an admissible model is a ‘maximal

element’ of the partially ordered set defined by the choice set and the dominance relation.

By contrast, OPA occurs if the evaluated model minimizes expected loss for some per-

missible loss function, ∃L ∈ L,∀i ∈ I : EF [L(Ei)− L(EM )] > 0, or equivalently:

O(L,F) : sup
L∈L

inf
i∈I

EF [L(Ei)− L(EM )] > 0. (2)

It follows from the Max-Min Inequality that admissibility is a necessary but not sufficient

condition for OPA: A(L,F)⇐ O(L,F). The distinction between admissibility and OPA is

not trivial. The optimal set of stocks in Bawa, Bodurtha, Rao & Suri (1985) is about 30

percent smaller than the corresponding admissible set.

Again, the distinction between strict and weak inequality is inconsequential for the anal-

ysis, as the loss function is required to be increasing on XM . A binding inequality occurs
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if the evaluated model is a non-unique minimizer due to the existence of multiple optimal

models for the optimal loss function.

The nested structure L0 ⊃ L1 ⊃ L2 furthermore implies O(L0,F) ⇐ O(L1,F) ⇐

O(L2,F), that is, imposing additional structure on the loss function reduces the optimal

set.

Jin, Corradi & Swanson (2017) adopt an alternative approach, based on Superiority:

S(L,F) : inf
i∈I

inf
L∈L

EF [L(Ei)− L(EM )] ≥ 0. (3)

The evaluated model is superior if it dominates all alternatives. In this case, the model

is the only element of the optimal set; it is the ‘greatest element’ of the partially ordered set.

Clearly, Superiority is a sufficient but not necessary condition for OPA: S(L,F)⇒ O(L,F).

If multiple forecasts are optimal, then the superior set is empty. The Superiority criterion

therefore generally becomes non-informative as the number of forecast models increases. The

OPA concept, by contrast, remains informative as the number of forecast models increases,

because it always defines both (i) the (empty or singleton) superior set and (ii) the (non-

empty) optimal set.

2.4 Numerical example

A random variable has a Bernoulli distribution with latent probability P[X = 1] = 0.5.

Four independent trials give rise to 24 = 16 equally likely scenarios (X1, X2, X3, X4) ∈ {0, 1}4.

After observing the outcomes of the first three trials (X1, X2, X3), three forecasts are formed

for the outcome of the fourth trial (X4): Y1 := 1
3

(X1 +X2 +X3) , Y2 := 1
8

+ 1
2
Y1, and

Y3 := 3
8

+ 1
2
Y1.

It is straightforward to calculate the forecast errors Ei = X4 − Yi, i = 1, 2, 3, in the 16
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scenarios. Forecast Y1 is unbiased but less precise than the negatively biased forecast Y2 and

the positively biased forecast Y3. The forecast is stochastically dominated by neither Y2 nor

Y3, for L1. For example, EF [L∗1(E1)] = 1
4
< 5

16
= EF [L∗1(E2)] for L∗1(E ) = (E)+ ; similarly,

EF [L∗∗1 (E1)] = 1
4
< 5

16
= EF [L∗∗1 (E3)] for L∗∗1 (E ) = (−E)+.

Nevertheless, Y1 does not minimize the expected value for any L ∈ L1 and, hence, it

is non-optimal. For example, EF [L∗1(E1)] > 3
16

= EF [L∗1(E3)] and EF [L∗∗1 (E1)] > 3
16

=

EF [L∗∗1 (E2)]. To prove the universal claim, it suffices to demonstrate that there exists no

feasible solution to the system of inequalities which is developed in Section 3.3.

The other two forecasts, Y2 and Y3, are known to be optimal, as they minimize expected

loss for L∗1 and L∗∗1 , respectively. Hence, the OPA criterion reduces the choice set from

three forecasts {Y1, Y2, Y3} to two forecasts {Y2, Y3}. By contrast, the SDS criterion does not

reduce the set of forecasts, because all three forecasts are not dominated and the superior

set is empty.

The example can also illustrate the power of the symmetry assumption. If the permissible

loss functions are limited to L2, then the asymmetric loss functions L∗1 and L∗∗1 are no longer

permissible and Y1 is dominated by both Y2 and Y3. Therefore, also the admissible set is

reduced to {Y2, Y3}, in this case.

3 Empirical Tests

3.1 Hypothesis structure

The focus is on testing a null hypothesis of optimality (H0(L,F) : O(L,F)) versus an

alternative hypothesis of non-optimality
(
H1(L,F) : OC(L,F)

)
for L ∈ {L0,L1,L2}, where

the superscript C denotes the logical complement. A test procedure is designed to control

the test size, or frequency of false exclusions (Type I errors), by estimating critical values

for a given significance level. The frequency of false inclusions (Type II errors), and thus the
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test power, is not directly controlled and depends on the dimensions and structure of the

data, for a given significance level.

It follows from Definition (2) that the null can be formulated as (M − 1) moment in-

equalities with respect to the infinite-dimensional parameter L:

H0(L,F) : (EF [L(Ei)− L(EM )] ≥ 0, i = 1, · · · ,M − 1) , L ∈ L. (4)

Weak inequalities are used here, because the loss function is required to exhibit non-

zero variation onXM . The test procedure imposes this requirement by standardizing the

decrements and increments of the loss function in the interior of the sample range (see

Section 3.3); this standardization in turn requires the exclusion of certain irrelevant forecast

models at the data pre-processing stage (see Section 3.2).

If a single given loss function L is considered, that is, L = {L}, then H0(L,F) reduces

to the SPA hypothesis used in White (2000) and Hansen (2005). If two prospects are

considered (M = 2), then H0(L,F) reduces to a hypothesis of pairwise non-dominance as in

Kaur, Prakasa Rao & Singh (1994), Davidson & Duclos (2013) and Davidson (2009), which

corresponds to the alternative hypothesis of Jin, Corradi & Swanson (2017).

The null hypothesis partially identifies the loss function. The identified set is given

by L∗(F) := {L ∈ L : EF [L(Ei)− L(EM )] ≥ 0, i = 1, · · · ,M − 1}. Instead of constructing

confidence sets for L∗(F), the analysis focuses on testing H0(L,F) : O(L,F), which is

equivalent to H0(L,F) : L∗(F) 6= ∅.

The reverse hypothesis structure (H0(L,F) : OC(L,F) vs. H1(L,F) : O(L,F)) seems

of less interest, because non-rejection of non-optimality does not allow for exclusion of the

evaluated model. In tests based on the reverse structure, false exclusions are Type II errors

and beyond the control of the analyst.
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3.2 Time series data

In practice, the CDF F is latent and has to be estimated using empirical data. Since

the two empirical applications in this study use time series data, it is assumed here that

the analyst has access to a discrete set of time series realizations Xt, and point forecasts

ŷt := (ŷ1,t · · · ŷM,t), for t = 1, . . . , T .

The analysis allows for the existence of latent point forecasts yt := (y1,t · · · yM,t) which are

measurable functions mi (Zi,t,θ0i) of a random vector of predictive variables, Zi,t ∈ Rdi , and

a latent parameter vector θ0i ∈ IntΘi from the parameter space Θi ⊆ Rdi . The forecasts at

time t are constructed as ŷi,t := mi (Zi,t,θti) for realizations Zi,t and parameter estimators

θti .

Given Xt, the unobservable error is ut := Xt1
′
M − yt and the observed error is εt :=

Xt1
′
M−ŷt, where yt := [m1 (Z1,t,θ10) · · ·mM (ZM,t,θM0)]

′ and ŷt := [m1 (Z1,t,θ1t) · · ·mM (ZM,t,θMt)]
′.

If mi is independent of θ0i and/or θ0i is known for all i, then the original error ut becomes

observable, several of the below assumptions become obsolete, and the derivations of the

limit theory become simpler.

Given the observable time series εt, t = 1, . . . , T , the latent CDF F is approximated by

the empirical cumulative distribution function (ECDF), defined by

FT (E) := T−1

T∑
t=1

I (εt ≤ E) . (5)

Other CDF estimators such as those based on multivariate kernel estimation, copulas and

polynomial approximations can be employed by constructing the ECDF of a large random

sample generated by the relevant CDF estimator.

To simplify the exposition of the numerical procedure, it is assumed that certain fore-

cast models are eliminated at the data pre-processing stage. For L0 and L1, models with

mint εi ,t < mint εM ,t or maxt εi ,t > maxt εM ,t are excluded; for L2, models with maxt |εi ,t | >
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maxt |εM ,t | are excluded. These prospects do not affect the empirical OPA classification and

the value of the test statistic. Unless it can be determined with sufficiently high confidence

that they are non-optimal under the latent error distribution, these prospects cannot be

ignored when estimating the critical values.

3.3 Empirical moment conditions

Let FT be the set of all multinomial distributions with atoms at the T data points. This

set includes the ECDF, that is, FT ∈ FT . For a given F ∈ FT with probability mass function

(PMF) f(E), H0(L, F ) can be represented by a finite and exact system of linear inequalities.

This system can be obtained by replacing the infinite-dimensional parameter L ∈ L by a

permissible piecewise-linear loss function, along the lines of Post (2003, Thm 2). Specifically,

for every permissible L1 ∈ L, there exists piecewise-linear upper envelope L2 ∈ L, such that

(i) L1(EM) = L2(EM) and (ii) L1(Ei) ≤ L2(Ei), ∀i = 1, . . . ,M − 1.

It follows that the subset of piecewise-linear loss functions includes a solution to the

empirical moment conditions if and only if the set L includes a solution. The reduction

of the set of permissible loss functions therefore does not affect the truth of the empirical

moment condition, the value of the test statistic or the estimated critical values which are

introduced below.

For L0 and L1, let {zt}T+1
t=1 represent the ranked values of {εM ,t}Tt=1 ∪ {0}, so that z1 ≤

· · · ≤ zT+1. Let T0 := sup {t : zt < 0} , so that zT0+1 = 0. For L2, let {zt}T+1
t=1 represent the

ranked values of {|εM ,t |}Tt=1 ∪ {0}.

For a given General Loss function L ∈ L0, let βs := L(zs)−L(zs+1) ≥ 0, s = 1, · · · , T0, be

decrements in the negative domain and βs := L(zs+1)−L(zs), s = T0+1, · · · , T , be increments

in the positive domain. A general stepwise loss function is obtained by summation by parts:
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L0,β(E) :=


+∞ E < z1∑T0

s=1 βsI (E ≤ zs+1) +
∑T

s=T0+1 βsI (E ≥ zs) z1 ≤ E ≤ zT+1.

+∞ E > zT+1

(6)

Similarly, for a given Convex Loss function L ∈ L1, let σs := (L(zs+1)− L(zs)) / (zs+1 − zs),

s = 1, · · · , T , be slopes of chords between two consecutive points, and βs := σs+1 − σs,

s = 1, · · · , T0 − 1; βT0 := −σT0 ; βT0+1 := σT0+1; βs := σs − σs−1, s = T0 + 1, · · · , T , incre-

ments of the slopes (recall that the slope at E = 0 is zero). A convex piecewise-linear loss

function is given by:

L1,β(E) :=


+∞ E < z1∑T0

s=1 βs (zs+1 − E)+ +
∑T

s=T0+1 βs (E − zs)+ z1 ≤ E ≤ zT+1.

+∞ E > zT+1

(7)

If a Symmetric Convex Loss function L ∈ L2 is used, then (7) reduces to

L2,β(E) :=


∑T

s=1 βs (|E| − |zs|)+ |E| ≤ |zT+1| .

+∞ |E| > |zT+1|
(8)

The search over the piecewise-linear functions can be performed using numerical opti-

mization. For every forecast i ∈ I and the relevant loss function class Lj, j = 0, 1, 2, define

the T × T coefficient matrix Mj,i with the following elements for s, t = 1, · · · , T :

(M0,i)t,s :=


I (εi ,t ≤ zs+1)− I (εM ,t ≤ zs+1) s = 1, · · · , T0

I (εi ,t ≥ zs)− I (εM ,t ≥ zs) s = T0+1, · · · , T
. (9)
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(M1,i)t,s :=


(zs+1 − εi ,t)+ − (zs+1 − εM ,t)+ s = 1, · · · , T0

(εi ,t − zs)+ − (εM ,t − zs)+ s = T0+1, · · · , T
. (10)

(M2,i)t,s := (|εi ,t | − |zs|)+ − (|εM ,t | − |zs|)+ . (11)

The matrix Mj,i is constructed such that Mj,iβ = (Lj,β(εi,t)− Lj,β(εM ,t))t=1,··· ,T . The in-

tervals where the loss function goes to infinity are ignored without harm due to the exclusion

of forecast models with extreme errors (see Section 3.2). Using p := (f(εt))t=1,··· ,T for the

values of the PMF associated with F , it follows that p′Mj,iβ = EF [Lj,β(Ei)− Lj,β(EM )] .

For numerical purposes, the loss function will be normalized by scalar multiplication such

that
∑T

s=1 βs = 1, without loss of generality. Combined with the non-negativity constraints,

the normalization implies β ∈ ∆T , where ∆T is a T -simplex.

Using these arguments, H0(Lj, F ), j = 0, 1, 2, is equivalent to the following linear system:

p′Mj,iβ ≥ 0, i = 1, · · · ,M − 1; (12)

β ∈ ∆T .

Using duality theory for Linear Programming (LP), it is possible to obtain a similar

system for testing non-optimality (OC(Lj, F )). Specifically, applying Farkas’ lemma to (12),

it is found that non-optimality occurs if and only if the evaluated forecast error distribution

is dominated by some convex mixture of the other forecast error distributions, extending

known results for utility functions by Bawa, Bodurtha, Rao & Suri (1985, Eq. (10)-(12), p.

423) to loss functions. Given the compelling arguments for treating O(Lj,F) rather than

OC(Lj,F) as the null hypothesis, this route is not further explored here.
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3.4 ELR test statistic

This study relies on a blockwise ELR test statistic, which is a transformation of a con-

strained non-parametric maximum log likelihood ratio.

The original time series is subdivided into T ∗ := (T−B+1) maximally overlapping blocks

of B consecutive observations, Bs := {εs, · · · , εs+B−1}, s = 1, · · · , T ∗. The optimal block

size depends on the context and involves a trade-off between the strength of the dynamic

effects and the number of independent blocks, or bT/Bc.

Let GT be the set of multinomial distributions with atoms at the T ∗ data blocks, repre-

sented by their PMF; let gT ∈ GT be the empirical probability mass functions (EPMF) of

the blocks:

gT (B) := (T ∗)−1
T ∗∑
s=1

I [Bs = B] . (13)

If B = 1, then FT (E) =
∑
Bs≤E gT (Bs), which amounts to assuming serial independence.

The block-level PMF g ∈ GT implies an observation-level PMF fg and CDF Fg. Specif-

ically, observation t is included in all blocks with indices from t− := max(1, t − B + 1) to

t+ := min(t, T ∗), t = 1, · · · , T . Therefore, fg (εt) ∝ B−1
∑t+

s=t− g (Bs) , t = 1, · · · , T and

Fg (E) :=
∑
εt≤E fg (εt).

Let R : (GT )2 → (−∞, 0] be the log likelihood ratio between two multinomial block-level

PMFs, so that the log empirical likelihood ratio between g ∈ GT and gT is given by:

R (g, gT ) := ln

( ∏T ∗

t=1 g(Bt))∏T ∗

t=1 gT (Bt))

)
=

T ∗∑
t=1

ln (g(Bt)) + T ∗ ln(T ∗). (14)

The constrained maximum log likelihood ratio and ‘implied’ probability mass function

(IPMF) amount to:
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RT (L) := supg∈GT {R (g, gT ) : H0(L, Fg)}

= supL∈L supg∈GT
{
R (g, gT ) :

(
EFg [L(Ei)− L(EM )] ≥ 0, i = 1, · · · ,M − 1

)
, L ∈ L

} ;

(15)

g∗T (L) := arg max
g∈GT
{R (g, gT ) : H0(L, Fg)} . (16)

The IPMF g∗T (L) is a constrained, non-parametric maximum likelihood estimator of the

latent block-level PMF. The statistical procedure is based on the scaled ELR test statistic

ELRT (L) := −2
T

T ∗B
RT (L). (17)

The scaling T
T ∗B

is standard in the Blockwise EL literature (see for example (Kitamura

(1997)). It approximates the number of occurrences of each individual observations inside

the EL function, and it reduces to one when B = 1. The ELR statistic has important statis-

tical optimality properties in the standard, point-identified case (Kitamura (2001)). Using

large deviations theory, Canay (2010) concludes that inference based on the ELR statis-

tic preserves important optimality properties, for partially identified models with moment

inequality restrictions.

3.5 Statistical inference

In the Section 4, the null limit distribution of ELRT is shown to have the form of a

supremum of a potentially degenerate process with chi-bar-square marginals, under general

assumptions. This insight is unfortunately of limited practical use, because the mixing

weights of the process depend on the latent CDF F , the latent exact temporal dependence
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between the observations and the latent set of binding moment conditions.

Conservative statistical inference however can be based on distributions which majorize

the latent limiting distribution. In a similar way, Post (2017) used the central chi-square

with (M − 1) degrees of freedom as a general upper bound, for optimality tests based on

utility functions and IID time series. This bound is reasonable when the number of models

(M) is small. However, tighter bounds can be established using statistical moment selection

methods in the spirit of Andrews & Jia Barwick (2012), for a larger number of models.

To implement moment selection, the present study uses the following set of forecast

models which are approximately equivalent to the evaluated model for a given loss function

L ∈ L:

CS(L,F , cT ) := {i = 1, . . . ,M − 1 : |EF [L(Ei)− L(EM )]| ≤ cT} .

Here, cT > 0 is a sample-dependent tolerance parameter which converges to zero at an

appropriate rate. This set is a superset of the ’contact set’ CS(L,F , 0) which consists of

forecast models which are exactly equivalent to the evaluated model for the relevant loss

function. The number of moment conditions which are approximately binding amounts to:

N(L,F , cT ) := #CS(L,F , cT ). (18)

Critical values are estimated using a central chi-square with number of degrees of freedom

equal to

N(L∗T , Fg∗T (L), cT ) = #
{
i = 1, · · · ,M − 1 :

∣∣∣p∗′Mj,iβ
∗
T

∣∣∣ ≤ cT

}
, (19)

where L∗T is a maximizer of the empirical optimization problem in (15). Consequently, the

null hypothesis is rejected at a given significance level α if and only if:

ELRT (L) ≥ q
(

1− α, χ2
N(L∗T ,Fg∗T (L),cT )

)
, (20)
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where q
(

1− α, χ2
N(L∗,Fg∗

T
(L),cT )

)
denotes the 1 − α quantile of the central chi-square distri-

bution with degrees of freedom given in (19).

This approach is motivated by the following insights: (i) if the null is correct, then the

limit distribution of ELRT (L) is majorized by the limiting chi-bar-square of ELRT (LT );

(ii) the limit distribution of ELRT (LT ) in turn is majorized by the central chi-square with

N(L,F , 0) degrees of freedom; (iii) the degrees of freedom can be estimated in an asymptoti-

cally conservative way using N(L∗, Fg∗T , cT ), cT > 0; (iv) if the null is violated, then ELRT (L)

diverges to +∞, while the quantile q
(

1− α, χ2
N(L∗T ,Fg∗T (L),cT )

)
is almost surely bounded from

above by q (1− α, χ2
M) for every T .

Section 4 demonstrates that the approach is statistically consistent and asymptotically

conservative under general assumptions: the probability of a false rejection is smaller than

or equal to the assumed significance level, in large samples. These results are not straight-

forward since the present EL framework involves moment inequalities that depend on an

infinite-dimensional and partially identified parameter, and blocking arguments to account

for temporal dependence.

Asymptotic conservatism can compromise the local power properties of the test. EL

bootstrap methods combined with contact set estimation could be used to approximate

critical values which lead to asymptotic exactness whenever the null limiting distribution is

not degenerate, thereby improving asymptotic local power properties.

Existing work on the EL boostrap includes Brown & Newey (2002), Canay (2010, Section

4.1.3), Andrews & Soares (2010) and Allen, Gregory & Shimotsu (2011). However, a more

general theoretical framework seems needed here , because none of the existing studies allows

for the simultaneous occurrence of partial identification, parameter infinite-dimensionality,

temporal dependence and blocking schemes. It is expected that a sufficiently general frame-

work results from extending the Block Bootstrap Functional CLT of Radulovic (1996) to

allow for resampling from stochastic EL-multinomial probabilities, VC-hull classes of func-

tions (see for example Par. 2.6 in van der Vaart and Wellner, 1996) as parameters and
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uniform inference.

Subsampling is an alternative approach. The results from Andrews & Guggenberger

(2009) and Romano & Shaikh (2010) can be applied to show that subsampling is a uniformly

valid approach to approximate the distribution of the ELR test statistic, under general

sampling schemes. The main practical complication in using subsampling, in contrast to

the aforementioned Block Bootstrap approach, lies in choosing the proper subsample length

and compromising power in small samples due to the subsamples using only a subset of the

original observations.

4 Limit Theory

The present section derives asymptotic properties for the testing procedure which was de-

scribed in Section 3.5. It is assumed that the loss functions in class L0(F) are equi-Lipschitz

and that F is continuous, to facilitate the derivations. The Appendix includes a discussion

of sufficient conditions for this assumption, situations in which it can be avoided, and rea-

sons why it is not needed for L1(F) and L2(F). Section 4.1. presents and motivates the

maintained statistical assumption framework. Section 4.2. derives the limiting behavior of

the relevant empirical processes and the test statistic; statistical consistency is derived using

the limit distribution under the null hypothesis; asymptotic conservatism is derived using

the limiting behavior under the alternative hypothesis.

The main analytical challenges to obtain these results are: (i) to reduce the complexity

of the loss function classes involved so as to obtain (blocking) functional limit theorems;

(ii) to establish that the empirical moment conditions defined in Section 3 approximate

the population moment conditions for every admissible loss function; iii) to account for

the infinite dimensionality of the parameters in the moment inequality conditions, when

establishing the asymptotic behavior of the EL function.

The analysis requires some additional notation. Specifically, in what follows, ‖·‖ denotes

the Euclidean norm, `∞ (A) the space of real-valued bounded functions on a set A equipped
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with the sup norm, and  convergence in distribution. B̄λ (η) denotes the closed Euclidean

ball in RM centered at λ with radius equal to η > 0.

4.1 Assumption framework

The limit theory assumes that a number of conditions are satisfied for the stationarity and

dependence properties of the predictive variables, smoothness properties of functions of the

unknown parameters, limiting representations for the estimators of the unknown parameters

and their sample sizes, the asymptotic rates of the number of blocks, as well as the slacks used

in the construction of the supersets CS(L,F , cT ). These conditions are consistent with the

empirical applications in Sections 6 and 7. The conditions which involve properties related

to the latent parameters and their estimators are similar to those in McCracken (2000) and

Jin, Corradi and Swanson (2017).

Assumption 4.2.1. The following conditions hold:

i. For rT > 0, as T →∞, rT →∞ and rT
T
→ γ ∈ (0,∞].

ii. For all i = 1, . . . ,M , and any t = 1, . . . , T , as T → ∞,

θit = θi0 + HirT

(
1
rT

∑t
j=t−rT hi,j + oa.s.

(
1√
rT

))
, HirT

 H0i which is a non-singular

di × di matrix, E [hi,j] = 0di×1 and E
[
‖hi,j‖2+δ

]
< +∞ for some δ > 0.

iii. The vector process Zt :=
[
Xt, (Zi,t, hi,t)i=1,...,M

]
t∈Z

is strictly stationary and absolutely

regular with mixing coefficients (βk)k∈N that satisfy βk = O (k−r) for r > 1. The joint

distribution of Z0 has continuous marginals.

iv. For some η > 0, such that for θ := (θ1, . . . ,θM) restricted to B̄θ0 (η) ⊂ R
∑M
i=1 di, and

θ0 = (θ10 , . . . ,θM0), the function θ → u (Z0,θ) := X01
′
M−[m1 (Z1,0,θ1) · · ·mM (ZM,0,θM)]

is almost surely Lipschitz continuous with respect to θ, with Lipschitz coefficient l (Z0),
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that satisfies E [l (Z0)] < +∞. Furthermore, E
[
supθ∈B̄θ0

(η) ‖u (Z0,θ)‖p
]
< +∞ for

some p ≥ 3, and for all t, the random variable xt−mM (ZM,t,θMt) has a density, that

is uniformly in t bounded away from zero.

v. The functions θM → EF [uM (Z0,θM)], and (L,θ) → EF [L (ui (Z0,θ))] are continu-

ously differentiable with respect to θM on ProjM B̄θ0 (η), and θ on B̄θ0 (η), for all L ∈

Λ := ∪j=0,1,2Lj and

supProjM B̄θ0
(η) ‖DθMEF [uM (Z0,θM)]‖ + sup{1,...,M}×Λ×B̄θ0

(η) ‖DθEF [L (ui (Z0,θ))]‖ <

+∞, where κi denotes the ith -coordinate of κ and Proji denotes projection to the ith -

coordinate.

vi. There exists some ε > 0 such that for all j = 0, 1, 2, infL∈L∗j (F), CS(L,F ,0) 6= ∅ λmin (V (L,M)) >

ε, where λmin (A) denotes the minimum eigenvalue of the positive-definite matrix A,

and V (L,M) := (Gj (i, L)−Gj (M,L))i∈CS(L,F ,0).

vii. The block size satisfies B → +∞ and B = O (T ρ) for 0 < ρ < 1
2
.

viii. The slacks satisfy cT → 0 and for any subsequence (T?),
√
T?cT? → +∞ almost surely.

What follows is a discussion of the plausibility of the above conditions for typical applications.

Assumptions 4.2.1.(i)-(ii) are satisfied when the estimators of the unobserved parameters

are estimated using a rolling window and the window size rT is of the same asymptotic order

as T . Assumption 4.2.1.(ii) allows for a large class of pseudo-consistent M-estimators, for

example, the OLSE, GMME or Quasi MLE, which asymptotically satisfy smooth enough

estimating equations, for example, under interior differentiability conditions for the criteria

involved.

The first part of Assumption 4.2.1.(iii) holds for processes that satisfy a general class

of stochastic recurrence equations which include GARCH models, among others; see, for

example, Mikosch and Straumann (2006, Section 4). This condition implies stationarity of
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the forecast errors which is not a harmless assumption. Notably, it does not allow for the

recursive estimation of latent model parameters, for example, using an expanding estimation

window. However, the analysis does permit a fixed, rolling or moving estimation window.

The second part excludes stationary processes with univariate marginals with atoms which

is a usual assumption in non-parametric inference.

The first two parts of Assumption 4.2.1.(iv) hold for predictive regressions, in which case

mi is bilinear in (Zi,0,θi), as long as the regressors have enough moments. The final part of

the assumption can be established if Zt jointly with the sample upon which θMt depends,

has a density with integral over each level set of xt−mM (ZM,t,θMt) which is bounded away

from zero uniformly in t due to the results in Hillier and Armstrong (1999, Section 3).

Assumption 4.2.1.(v) would follow from Assumption 4.2.1.(iii)-(iv), the uniform Lips-

chitz properties for the loss functions in each class (see Section 2.3 and the Appendix) and

dominated convergence, if u and the loss functions involved are moreover assumed to be

Lebesgue almost everywhere continuously differentiable (see, for example, Assumption A.0

in Jin, Corradi and Swanson (2017) for a similar restriction).

Assumption 4.2.1.(vii) is similar to the Definition 3.1.(iii)-(iv) of Canay (2010); it holds

whenever the random vector L (K (Z0,θ0)) consists of linearly independent random variables,

for all L ∈ L∗j(F) with non-empty contact sets, and the set L∗j(F) is compact in the topology

of pointwise convergence, due to Lemma A.0 in the Appendix, and Assumption 4.2.1.(iv).

Assumption 4.2.1.(vii) employs the usual restriction on the block size divergence rate

in comparison to T (see, for example, Thm.3 of Kitamura (1997)). Assumption 4.2.1.(viii)

restricts the slacks so as to converge to zero at a slower rate than
√
T , similar to the relevant

econometric literature; see Andrews and Soares (2010) and references therein.
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4.2 Empirical processes, null limit theory and test properties

A theorem is established about the limiting properties of the empirical processes associated

with the moment conditions, the limiting distribution for ELRT (L), for L = Lj, j = 0, 1, 2,

and the conservatism and consistency properties of the proposed test procedure.

Theorem 4.2.2. Under Assumption 4.2.1.(i)-(vii) for j = 0, 1, 2, as T →∞:

√
T [EgT [L (εi ,t)]− EF [L (ui,0)]] Gj (i, L) in `∞ (Aj) , (21)

where Aj := {1, . . . ,M} × Lj, Gj, are defined by (21)-(22) with L0 restricted to L∗0 (F), Gj

are zero mean Gaussian processes with covariance kernels

KGj ((i, L) , (i∗, L∗)) :=
∑∞

t=0 κtCov (L (ui,0) , L∗ (ui∗,t))

+%
∑∞

t=0 κtCov (L (ui,0) , DθEF [L (ui (Z0,θ0))]Hht)

+%
∑∞

i=0 κtCov (L∗ (ui∗,0) , DθEF [L∗ (ui (Z0,θ0))]Hht)

+%?DθEF [L (ui (Z0,θ0))]HVhH
′DθEF [L∗ (ui (Z0,θ0))]′

, (22)

i, i∗ ∈ {1, . . . ,M} , L, L∗ ∈ Lj, and κt =


1, t = 0

2, t > 0

; in addition, H is the
∑M

i=1 di×
∑M

i=1 di

block diagonal matrix diag1≤i≤
∑M
i=1 di

(H0i), ht := (hi,t)
′
i=1,...,M , Vh :=

∑∞
t=0 κtE [h0h

′
t], and

% =


1− γ

2
, γ < 1

1
2γ
, γ ∈ [1,+∞]

, %? =


1− γ

3
, γ < 1

1
γ
− 1

3γ2
, γ ∈ [1,+∞]

.

Furthermore, under H0(Lj,F) and as T →∞: i) if ∀L ∈ L∗j(F), CS(L,F , 0) 6= ∅,

ELRT (Lj) inf
L∈L∗j (F)

inf
v∈RN(L,F,0)

+

(V (L,M)− v)′Var−1 (V (L,M)) (V (L,M)− v) , (23)

and for i, i∗ such that (L, i) , (L, i∗) ∈ CS(L,F , 0) the (i, i∗) element of Var (V (L,M)) is

given byKGj ((i, L) , (i∗, L))−KGj ((i, L) , (M,L))−KGj ((M,L) , (i∗, L))+KGj ((M,L) , (M,L)),
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ii) if ∃L ∈ L∗j(F), CS(L,F , 0) = ∅,

ELRT (Lj) 0. (24)

Finally, if also Assumption 4.2.1.(viii) holds, then, for any α ∈ (0, 1), and as T →∞,

A. Under H0(Lj,F) if i) above holds then

lim sup
T→∞

P
(
ELRT (Lj) ≥ q

(
1− α, χ2

N(L∗,Fg∗
T
(Lj),cT )

))
≤ α, (25)

while if ii) above holds then

lim
T→∞

P
(
ELRT (Lj) ≥ q

(
1− α, χ2

N(L∗,Fg∗
T
(Lj),cT )

))
= 0. (26)

B. Under H1(Lj,F)

lim
T→∞

P
(
ELRT (Lj) ≥ q

(
1− α, χ2

N(L∗,Fg∗
T
(Lj),cT )

))
= 1. (27)

The convergence result in (21) specifies Gaussian limits for the empirical processes asso-

ciated with the moment conditions. The covariance kernels in (22) reflect the sample error

variation through their first term, the estimated parameters error variation through their

last term and the covariation between the two errors through the remaining terms. When

DθEF [L (κi (Z0,θ))] = 0∑M
i=1 di

for all i, L, and/or γ = ∞, any (co-) variation due to the

estimated parameters error disappears.

The results in (23)-(24) define the limiting distribution of the test statistic under the

null. Using the Gaussian limits in (21), and arguments similar to the ones in the last part of

the proof of Th. 3.1 of Canay (2010), the limit has the form of the infimum of a stochastic

process over L∗(F), which has potentially degenerate chi-bar square marginals with latent

weights.

Degeneracy at zero occurs if and only if the contact set is empty, or CS(L,F , 0) = ∅, for

some L ∈ L∗(F). This situation is not uncommon due to the discrete nature of the ground

set of alternatives.
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However, non-degeneracy is natural in several important cases. For example, if the

ground set of alternatives includes nesting forecast model specifications, then the contact

sets are non-empty by construction and the limit distribution is non-degenerate. Similarly,

if security prices or returns are forecasted in informationally efficient markets and the ground

set includes the random walk model, then the contact set will be non-empty; the random

walk model in this case operates as a theoretical greatest element which enters in every

contact set.

Despite its theoretical importance, the limit distribution of the test statistic cannot be

used directly for statistical inference in practice, as it depends on the latent CDF F , the

latent temporal dependence between the observations, the latent set of loss functions that

support the null, and the latent set of binding moment conditions.

The rejection region is constructed via the stochastic chi-square distribution introduced

in Section 3.5. This distribution is not generally expected to have a weak limit in probability

and may only possess sub-sequential limits. Despite this, the majorizing arguments in the

construction of the critical values, as well as the restrictions on the limiting behavior of the

slacks in Assumption 4.2.1.(viii) ensure that the test will be asymptotically conservative in

both the degenerate and the non degenerate cases. Also, the test remains consistent under

the alternative hypothesis, due to the divergence to infinity of the test statistic and the

boundedness from above of the quantiles used as critical values.

4.3 Extensions for further research

A number of extensions are considered for further research.

In the framework of Assumption 4.2.1.(i)-(ii), the analysis can be extended to allow for

recursive and/or fixed sampling schemes for the construction of the estimators θti for some

i ∈ {1, . . . ,M}. Using the results of West and McCracken (1998) and McCracken (2000), and

extending Assumption 4.2.1.(i) and.(ii) as Assumption A.2 and A.4 of Jin, Corradi & Swan-
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son (2017), (21) would continue to hold, featuring however more complicated expressions for

KGj . The analysis can also be extended to allow for cases where Θi for some i ∈ {1, . . . ,M}

is infinite dimensional, in the spirit of Linton, Song and Whang (2010).

Another possible extension is the use of side information in the form of moment condi-

tions in addition to the optimality hypothesis. Side information about the forecasts error

distribution may stem from application-specific knowledge about the forecasts models. For

example, in Accounting and Finance, the sign of the forecast bias can sometimes be de-

termined based on accounting conventions such as ’conservatism’ or modeling assumptions

such as ’risk neutrality’. We expect that relevant generalizations of (21) would reveal further

asymptotic efficiency gains, especially if the additional moment conditions don’t introduce

estimation risk for additional latent parameters.

Further extensions concern the optimal choice of the slacks and the block size in finite

samples, especially in the presence of parameter estimation error. A benchmark value for

cT is given in Canay (2010, Eq. 4.9). This specification could be improved in practice via

tailor-made Monte Carlo simulation experiments. The block size B can be chosen by some

empirical variance minimization method such as the one in El Ghouch et al. (2011).

5 Computational strategy

5.1 Auxiliary LP tests

Before computing the ELR test statistic, a number of auxiliary tests are recommended,

to lower the computational burden. It is recommended to first test whether there exists

a solution to the linear system (12) for the ECDF (p = T−11T ), using LP. If a feasible

solution exists, then it follows directly that the evaluated model is optimal in the sample,

G∗T (L) = GT and ELRT (L) = 0. If no feasible solution can be found, then the value of the
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test statistic must be computed or approximated.

In the applications in Section 5 and Section 6, an LP problem is employed, to test

existence of a feasible solution. The left-hand-side of the constraints in linear system (11)

are augmented with positive slack variables. The objective is to minimize the sum of these

slack variables. The resulting LP problem always has a feasible solution and attaining an

optimal value of zero for the objective function implies that the model is fully optimal in the

sample.

5.2 General problem

Let π ∈ ∆T ∗ be model variables which capture the block-level probabilities (g(Bt))t=1,··· ,T ∗ ,

G ∈ GT . The associated observation-level probabilities (fG(εt))t=1,··· ,T are given by p ∝ Pπ,

where the T × T ∗ matrix P has elements Pt,s := B−1I (t− ≤ s ≤ t+) , t = 1, · · · , T ; s =

1, · · · , T ∗. Let

gj(β,π) := (π′ (P′Mj,1)β · · ·π′ (P′Mj,M−1)β)
′
, j = 0, 1, 2. (28)

The likelihood ratio RT (Lj) and the ICDF G∗T (Lj) for j = 0, 1, 2, can be computed by

solving the following optimization problem:

27



max 1′T ∗ ln(π) + T ∗ ln(T ∗) (29)

s.t. gj(β,π) ≥ 0M−1;

β ∈ ∆T ;

π ∈ ∆T ∗ .

The multiplicative constraints gj(β,π) ≥ 0M−1 are generally not convex. However,

the sub-problems for given values of β ∈ ∆T are standard Convex Optimization problems.

Hence, the problem could be solved by enumerating a sufficiently large number of piecewise-

linear candidate solutions for β and solving all corresponding Convex Optimization problems,

along the lines of Post (2017).

5.3 Iterative strategy

Unfortunately, the number of required candidate solutions in the above approach quickly

explodes as the number of forecast models increases.

A more efficient procedure recognizes that the sub-problems for given values of π ∈ ∆T ∗

are also standard Convex Optimization problems. The procedure alternates between (i)

optimization over β given a solution for π and (ii) optimization over π given a solution

for β, in an iterative manner. The procedure essentially combines Generalized Methods of

Moments (GMM) for estimating the loss function and EL for estimating the probabilities.

Let π∗0 = π∗
1 := T−11T and π∗t , t = 2, · · · , the solution to the following maximization

problem:
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max 1′T ∗ ln(π) + T ∗ ln(T ∗) (30)

gj(β
∗
t−1,π) ≥ 0M−1;

π ∈ ∆T .

In this problem, β∗
0 := T−11T and β∗

t, t = 1, · · · , is the solution to the following

minimization problem:

min ε′W
(
β∗t−1, qt

)
ε (31)

gj (β, qt) + ε ≥ 0M−1;

β ∈ ∆T ;

ε ≥ 0M−1.

Here, qt ∈ ∆T ∗ is a prior solution for the probabilities based on the history π∗
s,

s = 1, ..., t. To avoid convergence after one iteration and, hence, allow for updating of

the estimates, our application uses a specification based on a lagged moving average: qt =

1
2

(π∗
t−1 + π∗

t). The weighting matrix is set equal to the identity matrix W (β, q) = IM−1,

to avoid problems with estimating and manipulating the error covariance matrix.

The procedure exploits the close relationship between EL and GMM. Problem (30) is a

standard EL problem with given model parameters; problem (31) amounts to an iterated

GMM problem with given probabilities.

Convergence to an optimum in a finite number of iterations cannot be formally proven

under general conditions. The goodness of the solutions in the empirical applications is
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however supported by a high robustness to the choice of the starting values π∗0 and β∗
0 and

weighting matrix W
(
β∗t−1, qt

)
, as well as a close proximity to the optimal value of the ob-

jective function which is found using the aforementioned brute-force approach (enumerating

all relevant piecewise-linear loss functions) for a number of randomly selected problems.

5.4 Resampling

The computational cost of the above numerical methods would be substantial when using re-

sampling methods, because multiple optimization problems would have to be solved for every

pseudo-sample or sub-sample. This approach would require High Performance Computing

or, alternatively, reducing the number of iterations, which in turn lowers the approximation

precision.

In order to save computer time, it is recommended to first check whether the hypothesis

of OPA can be rejected using the asymptotically conservative critical value for the desired

significance level and switch to re-sampling methods only in case of non-rejection. After all,

rejection at the conservative critical value already suffices to discard the evaluated forecast

model given the significance level.

Since this study considers a very large application in Section 6, the focus is on the

computationally friendly, conservative inference method based on a majorizing chi-squared

distribution and a moment selection procedure. Encouragingly, the conservative approach

proves to be sufficiently powerful to achieve very large set reductions in this application.

5.5 Hardware and software

For the empirical analysis in this study, the auxiliary LP problem and the non-linear op-

timization problems are modeled in GAMS. The GAMS modeling environment is deployed
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within MATLAB to facilitate data handling operations. The LP problems are solved with the

CPLEX solver of IBM ILOG CPLEX Optimization Studio 12.8.0.0; the non-linear problems

are solved with the CONOPT4 NNLP solver (Drud (1985)).

All problems are solved on a Dell PowerEdge M610 server computer with 2 x Intel Xeon

CPU E5620 processors with 2.40GHz speed and 48GB memory. The problem size is largest

for the extended data set in Section 6 (M = 3, 657 and T = 225). In this data set, the average

solution time is approximately 100 seconds for the auxiliary LP problem and 600 seconds

for the embedded Convex Optimization problems in the iterative procedure for solving the

non-linear problem.

6 Forecasting Exchange Rates

A first, small-scale application replicates and extends the empirical study of exchange rate

predictability of Jin, Corradi & Swanson (2017). Three forecast models are studied (3): the

spot price (SP), the forward price (FP) and the three-month-lagged three-month Moving

Average (MA). The original study does not include the MA forecast. This third model is

added here to better illustrate the difference between the optimality and superiority criteria.

The proposed OPA test is performed for all three forecasts (SP, FP, MA) and three

loss function classes (L0, L1, L2), for six currency pairs: Canadian dollar (CAD), French

franc (FF), German mark (DM), Japanese yen (JPY), Swiss franc (CHF) and British pound

(GBP), all measured against the US dollar. Daily data from Thomson Reuters Datastream

are used for the sample period from January 1, 1992, to February 28, 2002. The forecasts

horizon is three months. For each currency pair, the data set consists of T ≈ 2, 750 daily

forecasts for each of the M = 3 models.

The block size of the ELR test is set at 63 days, to account for overlapping of the

forecasts horizons. Since only three models are considered, the degrees of freedom for the
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asymptotic chi-square test is either 1 or 2, depending on the number of alternatives which

achieve approximately the same expected loss level as the evaluated model (see (19)).

Table I summarizes the test results by reporting the ELR test statistic for every combi-

nation of the three forecast models, three loss function classes and six currencies.

Using the General Loss class (L0), all forecasts are classified as optimal at conventional

significance levels for each of the six currencies. These findings imply that none of the

three forecasts is superior (for all currencies) and, moreover, every forecast is optimal for

some admissible loss function and thus not redundant (for five out of six currencies) for the

General Loss class.

The picture changes when the analysis is based on convex loss functions (L1). In this case,

MA is classified as significantly non-optimal for all six currency pairs. Consequently, MA can

be discarded for the L1 class, as the conservative nature of the test procedure ensures that

the probability of a false non-optimality classification does not exceed the significance level

in large samples. This result illustrates the additional discriminatory power from assuming

that the loss function is convex.

A further reduction of the choice set is however not possible for most currencies. The SP

and FP forecasts are both optimal and hence non-redundant for five out of six currencies (FF,

DM, JPY, CHF and GBP). No forecast is superior in these cases. These findings illustrate

the limitations of the superiority criterion compared with the optimality criterion.

Requiring the loss functions to be symmetric in addition to convex (L2) does further

reduce the choice set. Specifically, for the CAD, FF, DM and CHF currencies, the SP is the

unique optimal forecast for all Symmetric Convex Loss functions; for the JPY and GBP, both

SP and FP are optimal. These results illustrate the incremental effect on the discriminatory

power of the symmetry assumption.

Due to the small number of forecast models, the potential reduction of the choice set

in this application is naturally limited to just two forecasts (leaving one non-redundant

forecast); Section 5 develops a larger-scale application based on the comparison of thousands
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of inflation forecasts models of Hansen (2005).

[Insert Table I about here.]

7 Forecasting US Inflation

A second, large-scale application extends the empirical study of inflation forecasts of Hansen

(2005). The analysis compares thousands of distinct linear regression models which are

constructed from a set of 27 predictive variables. While Hansen evaluated the regression

models using a given Laplacian loss function, the present study consider entire families of

loss functions (GL, CL, SCL).

Table II lists the predictive regressors and provides details about their definition and

construction. Five regressors related to the Phillips Curve (Phillips (1958)) are denoted by

an asterisk (X∗6,t, X∗7,t, X∗8,t, X∗9,t, X∗10,t); these ‘PC regressors’ are given special attention

here because of their strong predictive power in Hansen’s study. The analysis considers

3, 656 distinct linear regression models with one, two or three out of the 27 regressors, and,

in addition, the random walk model, a total of M = 3, 657 models.

[Insert Table II about here.]

The analysis is performed using both Hansen’s original data set and an updated data set.

The two data sets are based the same set of forecasts models, but a different sample period

and different vintages of the underlying data for the predictive regressors.

The original data from 1952Q1 through 1999Q4 is used to make quarterly forecasts of

the end-of-quarter annual inflation change. Each regression model uses a time series of 32
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quarterly observations. The first forecast is thus made at the end of 1959Q4 and uses data

from 1952Q1 through 1959Q4 to predict the change in inflation between the end of 1960Q1

and the end of 1961Q1; the last forecast is made at the end of 1999Q3 for the change in

inflation between the end of 1999Q4 and the end of 2000Q4. The evaluation period thus

includes T= 160 quarters.

The updated data set uses the most recent vintage available from the FRED database on

May 31, 2018. These data are used to generate updated series of forecasts for the original

sample period and the subsequent 16-year period. The first forecast is again made at the

end of 1959Q4; the final forecast is now made at the end of 2015Q4, predicting the change

of inflation between the end of 2016Q1 and the end of 2017Q1.1 The updated evaluation

period thus includes T= 225 quarters.

Given the multitude of models, reduction of the choice set is highly desirable. The

hypothesis of OPA is tested for each of the 3,657 forecasting model against all alternative

models, for each of the three loss function families.

A blockwise application of the ELR test seems not needed in this application, as the

quarterly data exhibit limited serial dependence and, furthermore, the forecast horizons are

not overlapping; the block length is therefore set at B = 1. The number of degrees of freedom

for the asymptotic chi-square test is again equal to the number of alternative models which

achieve approximately the same expected loss level as the evaluated model (see (19)).

A summary overview of the frequency of non-rejection at different significant levels (α)

is provided in Table III. For both data sets and several significance levels, the table shows

the number of models for which OPA cannot be rejected and the fraction of such models out

of the total number of models.

As shown in the table, OPA cannot be rejected at any significance level for the General

Loss class for the large majority of the 3,657 models. For the original data set, 2,500 models
1Forecasts after 2015Q4 can not be made due to the unavailability of one of the predictive variables,

namely the producer price index for finished consumer foods (PPIFCF), as explained in the relevant page of
the FRED website: https://fred.stlouisfed.org/series/PPIFCF.
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(68.36%) are fully GLSD optimal. The number rises to 3,641 (99.56%) when working with

the updated data set. These findings illustrate the lack of discriminatory power of the OPA

criterion for the General Loss loss function class.

For the Convex Loss class, only 85 forecast models (2.32%) are fully CLSD optimal, using

the original data set. The set reduction from 2,500 to 85 models illustrates the power of the

convexity assumption. The symmetry assumption further shrinks the choice set: only 31

models (0.85%) are SCLSD optimal. This number is even smaller than expected using the

aforementioned
√
M ‘rule’ based on existing applications of SD optimality in finance and

welfare analysis, since
√
M =

√
3, 657 ≈ 60 in the present application.

The results for the updated data set similarly show impressive set reductions for the

Convex Loss and Symmetric Convex Loss function classes compared to the General Loss

class. Only 73 models (2.00%) are fully CLSD optimal. Assuming symmetry is again very

effective: only 13 models (0.36%) are SCLSD optimal for this data set.

Naturally, the optimal set expands as the significance level is lowered. However, the

set reductions remain substantial. Importantly, the incremental effect of the symmetry

assumption in terms of the number of exclusions is strongest for low levels of significance.

At the 1% level of significance, optimality cannot be rejected for 1,410 models (38.56%) for

the Convex Loss class and only 895 models (24.47%) for the Symmetric Convex Loss class.

[Insert Table III about here.]

To further diagnose the results, Logit regression analysis is performed to explain the OPA

test results with variables which capture features of the evaluated forecasting models. The

dependent variable DCFO is a dummy which takes a value of one if the ELR test statistic

equals zero. The explanatory variables areDPC , or a dummy which takes a value of one when

at least one PC regressor is included in the forecast model, NPC , which denotes the number

of included PC regressors, and NAll, or the total number of regressors in the predictive model.
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The results of the Logit regression analysis are reported in Table IV. These results con-

firm Hansen’s conclusion that PC variables are important predictors, for both data sets and

all families of loss functions. More specifically, the statistically significant coefficient for DPC

demonstrates that the inclusion of PC regressors systematically increases the likelihood of

forecast optimality. However, the number of PC regressors appear to matter neither for the

Convex Loss class nor the Symmetric Convex Loss class, witness the insignificant role of

the regressor NPC . By contrast, the total number of regressors, NAll, does appear relevant:

increasing the number of regressors systematically decreases the likelihood of forecast op-

timality. Overall, these results suggest that both PC regressors and model parsimony are

important in forecasting inflation.

[Insert Table IV about here.]

8 Conclusion

To compare multiple forecasts in the face of ambiguity regarding the relevant loss function,

the OPA hypothesis extends the SPA hypothesis by White (2000) and Hansen (2005) from

a single given loss function to an entire class of loss functions.

The work by Fishburn (1974), Bawa, Bodurtha, Rao & Suri (1985) and Post (2017) was

extended by (i) identifying forecast comparison as a new application area for SD Optimality;

(ii) using three distinct classes of loss functions instead of utility functions; (iii) a blockwise

implementation of EL; (iv) less conservative critical values using a moment selection proce-

dure; (v) an explicit and general statistical limit theory for the test statistic and estimated

critical values; (vi) a computationally more efficient computational strategy which alternates

between two distinct standard Convex Optimization problems.
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The earlier application of SD criteria to forecast comparison by Jin, Corradi & Swanson

(2017) was extended by (i) adopting the powerful concept of optimality instead of superiority;

(ii) considering the class of Symmetric Convex Loss functions in addition to General Loss and

Convex Loss functions to improve discriminatory power; (iii) a hypothesis structure which

allows for controlling the probability of false model rejections; (iv) a formulation in terms

of moment inequality conditions which allows for efficient moment-based inference methods;

(v) developing an empirical application for a very broad cross-section of forecast models.

The proposed framework was applied to the small-scale empirical study of exchange rate

predictability by Jin, Corradi & Swanson (2017) and the larger study of inflation forecast

models of Hansen (2005). A very large majority of thousands of inflation forecast models can

be discarded for all standard loss functions. Confirming the conclusion by Hansen (2005),

the optimal set consists mostly of forecast models with a Phillips Curve structure.
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Appendix

A.1 Further representations of the stochastic orders

The empirical moment conditions in (15) depend on the random empirical atoms {zt}T+1
t=1 .

To account for the asymptotic behavior of the set of atoms in the derivation of the limit

theory in Section 4, equivalent representations for the stochastic orders are established. The

representations are based on loss functions which can be formulated as functionals on P (XM),

the set of probability distributions that are supported inside XM .

Lemma A.0. Given the definitions of Lj, j = 0, 1, 2, we have that:

[50]1. EM �L0,F Ei iff

EF
[∫ 0

aM
I (Ei < z)− I (EM < z) dF (z)

]
+ EF

[∫ bM
0

I (Ei ≥ z)− I (EM ≥ z) dF (z)
]
≥ 0 ,

(32)
for every F ∈ P (XM).
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2. EM �L1,F Ei iff

EF
[∫ 0

aM
(z − Ei)+ − (z − EM)+ dF (z)

]
+ EF

[∫ bM
0

(Ei − z)+ − (EM − z)+ dF (z)
]
≥ 0 ,

(33)
for every F ∈ P (XM).

3. EM �L2,F Ei iff

EF
[∫ 0

min{aM ,−bM}
(|Ei| − |z|)+ − (|EM | − |z|)+ dF (z)

]
≥ 0, (34)

for every F ∈ P (XM).

Proof of Lemma A.0. For GLSD, it suffices to show that each L ∈ L0 can be characterized

as L (x) =


FL (0)− FL (x) , x < 0

FL (x)− FL (0) , x ≥ 0

, by a unique FL ∈ P (XM), and vice versa. For the

reverse implication, L can be chosen so that L (aM)+L (bM) ≤ 1, as a result of the scale invari-

ance of the inequalities EF [L(Ei)] ≤ EF [L(EM )]. Let FL (x) :=


1− L (bM)− L (x) , x < 0

1− L (bM) + L (x) , x ≥ 0

,

which is a well-defined CDF supported on XM , due to the above restriction and the right-

continuity of L (by Assumption 2.1.1). The direct implication follows from this represen-

tation. The cases of CLSD (L1) and SCLSD(L2) follow from the integral representations

of continuous convex functions in compact intervals, see, for example, Pollard (2010, Thm.

C.3.4) along with the arguments that lead to the proof of Th.1 of Russel and Seo (1989), or

Niculescu and Persson (2006, Th. 1.6.3).�

Lemma A.0 generalizes Propositions 2.2 and 2.3 of Jin, Corradi & Swanson (2017) in

the sense that it characterizes the GLSD and CLSD orders without requiring almost ev-

erywhere differentiability for the loss functions involved and extends the characterization

to SCLSD. Result (32) implies that if EM �L0,F Ei, then [FM (x)−Fi (x)] sgn (x) ≥ 0

for every x ∈ XM , by choosing F as the degenerate distribution at x, using FM and

Fi for the CDFs of the marginal distributions of EM and Ei, respectively. The reverse

holds if F is assumed to be continuous, or, alternatively, Assumption A.0 of Jin, Cor-
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radi & Swanson (2017) holds, due to the integration by parts property for the Lebesgue-

Stieljes integral. Using the same reasoning, integration by parts, and this stricter assump-

tion framework, it can be found that Ei �L1,F EM iff
∫ x
aM

(Fi (z)−FM (z)) dzI (x < 0) +∫ bM
x

(FM (z)−Fi (z)) dzI (x ≥ 0) ≥ 0. Analogously we also come up with the novel represen-

tation, Ei �L2,F EM iff
∫ −|x|

min{aM ,−bM}
(Fi (z)−FM (z)) dz+

∫ −min{aM ,−bM}
|x| (FM (z)−Fi (z)) dz ≥

0, for all x ∈ [min {aM ,−bM} , 0].

A.2 Equi-Lipschitz properties

Part of the analysis in this study assumes that loss functions are equi-Lipschitz. The Lips-

chitz continuity property implies the uniform approximation of every element in the class by

a piecewise linear Lipschitz function, which in turn facilitates the approximation by the loss

functions implied by the empirical moment conditions in Section 3.3 the following. Further-

more, the uniformity in the Lipschitz continuity property implies that the approximation

errors are independent of the loss functions involved (see Paragraph A.3). In the presence

of the parameter θ, the uniformity in the Lipschitz continuity property facilitates the re-

duction of the metric complexity of the loss function space, so that results involving the

use of entropy integrals are accessible (see for example Condition (8.33) in Th. 8.3 of Rio,

2017). Such a restriction is avoidable if results like the Decoupling Lemma of Radulović and

Wegkamp (2017) can be extended to functions of uniformly bounded variation defined on

multivariate Euclidean spaces. When u (Z0,θ) is independent of θ, or θ0 is known, then this

lemma is applicable and thereby this restriction is not actually needed (see also Example

2.10.7 of van der Vaart and Wellner, 1996).

For CLSD (L1) and SCLSD (L2), the uniform Lipschitz property follows from the rep-

resentation result in Pollard (2010, Thm C.3.4 )-see also the terms inside the expectations

EF in (33)-(34) of Lemma A.0. By contrast, the equi-Lipschitz property does not generally

hold for GLSD (L0) and an alternative justification of the property is required.
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Due to DeVore and Lorentz (1993, Thm 9.3 and relation (9.10)) and the continuity of

F , the equi-Lipschitz property holds, if for example, L0 (F) is restricted to be comprised

of functions which belong to a uniformly bounded subset of the Sobolev space W 1
∞ (XM)

(see DeVore and Lorentz (1993) Ch.2, Par. 5 for the definition and properties of the

Sobolev spaces). Finally, our derivations under the weaker assumption, that L0 (F) is com-

prised of functions that are Lipschitz continuous, while for some δ > 0, the set L∗δ0 (F) :={
L ∈ L0 (F) : ∃L∗ ∈ L∗0 (F) , supx∈XM |L (x)− L∗ (x)| ≤ δ

}
is equi-Lipschitz.

A.3 Approximation by the empirical moment inequalities

Suppose that {zt}T+1
t=1 is as in Section 3.3. The following lemma along with the order represen-

tations of Lemma A.0, imply among others that any loss function in the relevant class, can be

asymptotically uniformly in probability approximated by a loss function constructed by some

appropriate (stochastic) distribution supported on {zt}T+1
t=1 with approximation rate Op

(
1
T

)
.

In what follows, and given the results of Lemma A.0, for G ∈ P (XM), the loss function

L associated with G is defined by,
(∫ 0

aM
I (x < z) dF (z) +

∫ bM
0

I (x ≥ z) dF (z)
)
|F=G , or(∫ 0

aM
(z − x)+ dF (z) +

∫ bM
0

(x− z)+ dF (z)
)
|F=G , or

(∫ 0

min{aM ,−bM}
(|x| − |z|)+ dF (z)

)
|F=G,

and EF [LT (Ei)] is defined by
(
EF
[∫ 0

aM
I (Ei < z) dF (z)

]
+ EF

[∫ bM
0

I (Ei ≥ z) dF (z)
])
|F=G ,

or
(
EF
[∫ 0

aM
(z − Ei)+ dF (z)

]
+ EF

[∫ bM
0

(Ei − z)+ dF (z)
])
|F=G , or(

EF
[∫ 0

min{aM ,−bM}
(|Ei| − |z|)+ dF (z)

])
|F=G, for the cases j = 0, 1, 2 respectively.

Lemma A.1. Suppose that L is equi-Lipschitz. Then the following hold:

1. For any L ∈ L and ε > 0, there exists a piecewise linear Lε ∈ L such that

supx∈XM |L (x)− Lε (x)| ≤ ε.

2. Under Assumption 4.2.1.(i)-(v), for any G ∈ P (XM), as T →∞, w.h.p. there exists a

stochastic distribution GT supported on {zt}T+1
t=1 , such that supx∈XM |L (x)− LT (x)| =

Op

(
1
T

)
, where LT denotes the piecewise linear loss associated with GT . Subsequently,
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∣∣EF [Lk (Ei)
]
− EF

[
LkT (Ei)

]∣∣ = Op

(
1
Tk

)
, for all i = 1, . . . ,M . All the remainders are

uniform in L.

Proof of Lemma A.1. 1. Let ` denote the common Lipschitz coefficient of the class.

For arbitrary L ∈ L, ε > 0, choose a partition of XM with mesh equal to ε
2`

and such

that 0 is the endpoint of some member of the partition. When L = L2 choose a partition

for [min {aM ,−bM} ,max {−aM , bM}] instead of XM , and make sure that its endpoints are

symmetric around zero. Construct the piecewise linear Lε by the relation L (x) = Lε (x)

for all x that are endpoints of the partition. By construction we have that Lε ∈ L. By the

fact that every L ∈ L must be Lebesgue almost everywhere differentiable with absolutely

bounded derivative (by `), it easy to see that Lε is Lipschitz continuous, with coefficient

bounded from above by ` and using mean value expansions at each element of the partition,

that supx∈XM |L (x)− Lε (x)| ≤ ε due to the mesh choice. 2. The first part follows from

1, the representations of L from Lemma A.0, which imply the existence of a discrete GT

supported on the stochastic set {zt}T+1
t=1 and that, due to Lemma A.2 (37), the final part of

Assumption 4.2.1.(iv) and Lemmas 21.4.(ii) and 21.7 of van der Vaart (2000) the mesh of

the partition implied by {zt}T+1
t=1 is w.h.p. as T →∞, Op

(
1
T

)
. The second part follows from

the first the triangle inequality and the fact that L is uniformly bounded. The uniformity

follows from that the remainders depend only on the common Lipschitz coefficient.�

A.4 Proofs of main results

Proof of Theorem 4.2.2. (21) is derived in Lemma A.2. Suppose that LT is some loss

function constructed by some GT as in Lemma A.1 which converges uniformly in probability

to some L ∈ L. Then (21), Lemma A.1 and Skorokhod representations (justifiable by Knight
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(1999)) imply that

√
T [EgT [L? (εi ,t)]− EF [L? (ui,0)]] |L?=LT

fidi→ Gj (i, L) ,

where fidi→ denotes fidi convergence. Tightness follows from (21), and Lemma A.1, and thereby
√
T [EgT [L? (εi ,t)]− EF [L? (ui,0)]] |L?=LT  Gj (i, L) in `∞ (Aj) . Assume now that L ∈

L∗(F). We have that, LT ∈ L∗(F) w.h.p., since due to Lemma A.1.(2), ∀ε > 0, i =

1, . . . ,M − 1,

P [EF [LT (Ei)]− EF [LT (EM)] ≥ ε]

≤ P
[
EF [L (Ei)]− EF [L (EM)] ≥ ε

3

]
+ P

[
|EF [L (Ei)]− EF [LT (Ei)]| ≥ ε

3

]
+P
[
|EF [L (EM)]− EF [LT (EM)]| ≥ ε

3

]
= o (1) .

Using the profile likelihood arguments and the auxiliary parameterization in Canay (2010)

(Section 3 and the proof of Th. 3.1), we obtain

ELRT (LT ) = maxλ≤0 2 T
T ∗B

∑T ∗

r=1 log
(

1 + λ′
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i

)

= max
λb,λs≤0

2
T

T ∗B

T ∗∑
r=1

log
(

1 + λ′b
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS + λ′s

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i/∈CS

)

= min
τ≥0

max
λ(τ)∈RM−1

2
T

T ∗B

T ∗∑
r=1

log
(

1 + λ′
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i

)
− 2

T

B
λ′ (τ) τ

= min
τb,τs≥0

max
λb∈RN(L,F,0),λs∈RM−1−N(L,F,0)

2
T

T ∗B

T ∗∑
r=1

log

 1 + λ′b
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

+λ′s
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i/∈CS


−2

T

B
λ′b (τ) τb − 2

T

B
λ′s (τ) τs, (35)

with L̄T
(
ε?i ,j
)

:= 1
B

∑B
m=1 LT

(
ε?i ,r,m

)
, ε?i ,j,m denoting the mth element of the rth block

(Zr, . . . , Zr+b−1), CS abbreviating CS(L,F , 0) and where the multidimensional inequalities
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are interpreted point-wisely. Using (21) and Lemma A.1.(2), we obtain that uniformly w.r.t.

L ∈ L∗(F), EgT
[(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i/∈CS

]
− EF

[
(L (ui,0)− L (uM,0))i/∈CS

]
converges to

zero in probability. As in the proof of Th. 3.1 of Canay (2010), we have that for the

optimizer w.r.t. τs,

τsT =
1

T ∗

T ∗∑
r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i/∈CS

1 + λT (LT )′
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i

≥
1
T ∗

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i/∈CS

1 + λT (LT )′ 1
T ∗

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i

,

due to Jensen’s inequality, with λT (LT ) denoting the optimizer of (35) w.r.t. λ. As in Canay

(2010) we have that λT (LT )′ 1
T ∗

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i
≥ 0. The previous along with

that λ′sT (τ) τsT = 0, imply that λsT (LT ), the optimizer for the asymptotically non-binding

moment inequalities of (35), eventually equals zero w.h.p, uniformly in L∗(F). Hence w.h.p.

ELRT (LT ) = maxλb≤0 2 T
T ∗B

∑T ∗

r=1 log
(

1 + λ′b
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

)
minτb≥0 maxλb∈RN(L,F,0) 2 T

T ∗B

∑T ∗

r=1 log
(

1 + λ′b
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

)
− 2 T

B
λ′b (τ) τb

(36)

For an arbitrary sequence 0 ≤ τ ∗bT = Op

(
T−

1
2

)
that is uniform in L∗(F), λbT

(
LT , τ

∗
bT

)
,

the optimizer of

2
T

T ∗B

T ∗∑
r=1

log
(

1 + λ′b
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS + λ′s

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i/∈CS

)
−2

T

B
λ′b (τ) τ ∗bT

satisfies
1

T ∗

T ∗∑
r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

1 + λbT
(
LT , τ ∗bT

)′ (
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

− τ ∗bT = 0.

As in the proof of Lem. B.3 of Canay (2010), write λbT
(
LT , τ

∗
bT

)
= cTaT with cT ≥ 0 and
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‖aT‖ = 1, and notice that due to the Cauchy- Schwarz inequality

0 =

∥∥∥∥ 1
T ∗

∑T ∗

r=1

(L̄T (ε?i,r)−L̄T (ε?M ,r))i∈CS

1+λbT

(
LT ,τ

∗
bT

)′
(L̄T (ε?i,r)−L̄T (ε?M ,r))i∈CS

− τ ∗bT

∥∥∥∥
≥ cT

T ∗
a′T
∑T ∗

r=1

(L̄T (ε?i,r)−L̄T (ε?M ,r))i∈CS(L̄T (ε?i,r)−L̄T (ε?M ,r))
′

i∈CS

1+cT a
′
T (L̄T (ε?i,r)−L̄T (ε?M ,r))i∈CS

aT

−
∣∣∣ 1
T ∗

∑N(L,F ,0)
j=1 e′j

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS − τ

∗
bT

∣∣∣ ,
where ej is the jth unit vector. Thus we obtain that

0 ≥ cTa
′
T

1
T∗
∑T∗
r=1(L̄T (ε?i,r)−L̄T (ε?M ,r))i∈CS(L̄T (ε?i,r)−L̄T (ε?M ,r))

′

i∈CS

1+cT maxr

∥∥∥(L̄T (ε?i,r)−L̄T (ε?M ,r))i∈CS

∥∥∥ aT

−
∣∣∣ 1
T ∗

∑N(L,F ,0)
j=1 e′j

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS − τ

∗
bT

∣∣∣ .

Due to Lemma A.4, Assumption A.2.1 and Lemma A.1.(2) we obtain that

1
T ∗

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))′
i∈CS converges in probability to

V (L,M) uniformly over L∗ (F), and due to Assumption A.2.1 λmin (V (L,M)) is bounded

away from zero. Furthermore, due to the norm equivalence property of Euclidean spaces,

Assumption 4.2.1 and Lemma A.3 we obtain that maxr

∥∥∥(L̄T (ε?i ,r)− L̄T (ε?M ,r

))
i∈CS

∥∥∥ =

op

(
T−

1
2

)
with uniform remainder. Putting the previous together we have that

∣∣∣ 1
T ∗

∑N(L,F ,0)
j=1 e′j

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS − τ

∗
bT

∣∣∣ ≥ cTa
′
T
λmin(V(L,M))+op(1)

1+cT op
(
T−

1
2

) aT ,

hence

Op

(
T−

1
2

)
=

1

λmin (V (L,M)) + op (1)

(∣∣∣ 1
T ∗

∑N(L,F ,0)
j=1 e′j

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

∣∣∣+
∥∥τ ∗bT∥∥)

≥ cT =
∥∥λbT (LT , τ ∗bT )∥∥ ,

due to Lemma A.4, Lemma A.1.(2). Setting γr := λbT
(
LT , τ

∗
bT

)′ (
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS,

r1,T := − 1
T ∗

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

γ2r
1+γr

, and noting that due to the previous and
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Lemma A.3, maxr |γr| = op (1) and analogously

‖r1,T‖ ≤
1

T ∗

T ∗∑
r=1

∥∥∥(L̄T (ε?i ,r)− L̄T (ε?M ,r

))
i∈CS

∥∥∥3
∥∥λbT (LT , τ ∗bT )∥∥2

|1 + γr|
= Op

(
T−1

)
,

uniformly in L∗(F), due to the previous and Lemma A.1.(2). Using again that

1
T ∗

∑T ∗

r=1

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈CS

(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))′
i∈CS converges in probability to

V (L,M) uniformly over L∗ (F), a full rank pd matrix uniformly in the part of L∗(F) con-

sisting of the loss functions with non-empty contact sets, while the latter has minimum

eigenvalue that is bounded uniformly away from zero w.r.t. the aforementioned set, and the

matrix inversion is Lipschitz in such cases, we also obtain the analogous uniform conver-

gence in probability of the inverses. Arguing as in the final part of the proof of Theorem 3.1

of Canay (2010), bounding the relevant remainders by terms that converge in probability

to zero uniformly in the aforementioned set, due to the previous, the final part of Lemma

A.1.(2), Lemma A.4, Assumption 4.2.1 and the uniform boundedness of L, it is obtained

that

ELRT (LT ) = Op

(
1√
T

)
+Op

(
1
T

)
+ minτb≤0

(
KT −

√
Tτb

)′
Var−1 (V (L,M))

(
KT −

√
Tτb

)
,

where KT :=
√
TEgT

[
(LT (εi ,t)− LT (εM ,t))i∈CS

]
and all the remainders are uniform in L.

(21) and the CMT then imply

ELRT (LT ) A (L) := inf
v∈RN(L,F,0)

+

(V (L,M)− v)′Var−1 (V (L,M)) (V (L,M)− v) in `∞
(
L∗j(F)

)
.

When L /∈ L∗(F), then for UL := {i = 1, 2, . . . ,M − 1 : EF [L(Ei)− L(EM )] < 0}

ELRT (LT ) ≥ max
λu≤0

2
T

T ∗B

T ∗∑
r=1

log
(

1 + λ′u
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈UL

)
.

Due to Assumption 4.2.1 and Lemma A.4, the pseudo-consistency of θit for all i and the

50



CMT, it follows that, for any λu that contains at least one strictly negative co-ordinate,

T
T ∗B

∑T ∗

r=1 log
(

1 + λ′u
(
L̄T
(
ε?i ,r
)
− L̄T

(
ε?M ,r

))
i∈UL

)
=

T
T ∗B

∑T ∗

r=1 log
(
1 + λ′u (EF [L(Ei)− L(EM )])i∈UL

)
+Top(1)

T ∗B

∑T ∗

r=1

(
1 + λ′u (EF [L(Ei)− L(EM )])i∈UL + op (1)

)−1
+ op (1)

which due to Jensen’s inequality is greater than or equal to

T

T ∗B

T ∗∑
r=1

log
(
1 + λ′u (EF [L(Ei)− L(EM )])i∈UL

)
+ op (1) +

Top (1)

T ∗2B
 +∞.

Hence, in this case, ELRT (LT )  +∞. The previous imply the weak epi-convergence of

ELRT (LT ) to


A (L) , L ∈ L∗(F)

+∞, L /∈ L∗(F)

. The results in (23)-(24) follows then from Molchanov

(2006, Thm 3.4) via the use of Skorokhod representations (justifiable by Knight (1999)) since

L∗(F) is compact w.r.t. the uniform metric.

Now, suppose that N(L,F , 0) 6= 0 for every element of L∗(F). The compactness of

L∗(F) and the continuity of (V (L,M)− v)′Var−1 (V (L,M)) (V (L,M)− v) w.r.t. L due

to (21) imply that, when (23) holds, there exist limiting optimizers. Let L∗ be one of the

optimizers, and suppose that, for a subsequence (T?), L∗T?  L∗. Then, uniformly w.r.t. the

i /∈ CS(L∗,F , 0), it is found that, due to the definition of slacks and the Birkhoff’s ULLN,

EFT? [LT?(Ei)− L(EM )] > cT , eventually, almost surely. Using (38), and Skorokhod repre-

sentations, we also have that, since
√
T?cT? diverges to infinity almost surely, uniformly w.r.t.

the i ∈ CS(L∗,F , 0),
∣∣√T?EFT? [LT?(Ei)− L(EM )]

∣∣ ≤ √T?cT , eventually, almost surely. The

previous imply that N(LT? ,F , cT?) converges in probability to N(L∗,F , 0). Then, due to

the majorization arguments in Section 3.5, (25). When N(L,F , 0) = 0 for some element

of L∗(F), the previous implies that ELRT (L) is eventually zero w.h.p., hence (26) follows.

Finally, when the null hypothesis does not hold, then the implication of the previous is

that ELRT (L) diverges to +∞, while the quantile q
(

1− α, χ2
N(L∗T ,Fg∗T (L),cT )

)
is almost surely
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bounded from q (1− α, χ2
M) for every T , hence (27) follows.�

A.5 Auxiliary results

Lemma A.2. Under Assumption 4.2.1.(i)-(vi) for j = 1, 2, as T →∞:

1√
T

T∑
t=1

(xt −mM (ZM,t,θMt)) N (0, v) , (37)

with v ≥ 0 and

√
T [EFT [L (εi ,t)]− EF [L (ui,0)]] Gj (L) in `∞ (Aj) , (38)

where Aj := {1, . . . ,M} × Lj, Gj are defined by (21)-(22) with L0 restricted to L∗0 (F). If

furthermore Assumption 4.2.1.(vii) holds, then (21) also holds.

Proof of Lemma A.2. Assumption 4.2.1.(iii)-(iv) and Rio (2017, Cor 4.1) imply that as

T →∞,

1√
T

T∑
t=1

[uM (Zt,θM)− EF [uM (Z0,θM)]]
fidi→ G? (θM) , in `∞

(
ProjM B̄θ0 (η)

)
,

where fidi→ denotes fidi convergence and uM denotes the M th element of u, while G? (θ) is a

zero-mean Gaussian process with uniformly continuous sample paths in `∞
(
ProjM B̄β0 (η)

)
.

Define the non-negative measure Q := (1 + 4
∑∞

k=0 βk)P , where P denotes the law of Z0.

Notice that the the Assumption 4.2.1.(iv) implies that there exists a CM > 0 independent

of θ, such that for any δ > 0,

EQ

 sup
θM1

,θM2
∈ProjM B̄θ0

(η),‖θM1
−θM2‖≤δ

|uM (Z0,θM1)− uM (Z0,θM2)|

 ≤ CMδ,

where EQ denotes expectation w.r.t. Q. This then implies (see for example the proof of Th.
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5 of Andrews (1994)) that the entropy integral condition (8.33) in Th. 8.3 of Rio (2016)

holds, which along with Assumption 4.2.1.(iii) implies the applicability of this theorem to

the empirical process 1√
T

∑T
t=1 [uM (Zt,θM)− EF [uM (Z0,θM)]] and thereby its tightness.

Hence,

1√
T

T∑
t=1

[uM (Zt,θM)− EF [uM (Z0,θM)]] G? (θM) , in `∞
(
ProjM B̄θ0 (η)

)
. (39)

Assumption 4.2.1.(i)-(ii) and (39) then imply that

1√
T

T∑
t=1

[uM (Zt,θMt)− EF [uM (Z0,θMt)]] G? (θM0) . (40)

Now, Assumption 4.2.1.(i),(ii),(v) and the Mean Value Theorem imply that as T → ∞,

almost surely,

1√
T

∑T
t=1 [EF [uM (Z0,θMt)]− EF [uM (Z0,θM0)]]

= 1√
RTT

∑T
t=1

[
DθMEF

[
uM
(
Z0,θ

?
Mt

)]]√
RT (θMt − θM0)

,

with θ?Mt
a random point on the ray that connects θMt and θM0 inside ProjM B̄θ0 (η). Due

to Assumption 4.2.1.(i)-(v), and Van Der Vaart (2000, Thm 18.14), jointly with (39),

1√
RTT

T∑
t=1

[DθMEF [uM (Z0,θ)]]
√
RT (θMt − θM0) G? (θM) , in `∞

(
ProjM B̄θ0 (η)

)
(41)

where now G? (θM) is a zero-mean Gaussian process with uniformly continuous sample paths

in `∞
(
ProjM B̄θ0 (η)

)
. The definition of θ?Mt

and (41) then imply that jointly with (40),

1√
RTT

T∑
t=1

[
DθMEF

[
uM
(
Z0,θ

?
Mt

)]]√
RT (θMt − θM0) G? (θM0) . (42)

Eq. (37) then follows via the Continuous Mapping Theorem.
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The equi-Lipschitz property of L and Assumption 4.2.1.(iv) implies that there exists a

C > 0 independent of L,θ, such that for any δ > 0,

EQ

[
sup

θ1,θ2∈B̄θ0
(η),‖θ1−θ2‖≤δ

|L (u (Z0,θ1))− L (u (Z0,θ2))|

]
≤ Cδ.

As previously, this implies that the entropy integral condition (8.33) in Th. 8.3 of Rio (2016)

holds, which along with the uniform boundedness of L and Assumption 4.2.1.(iii) implies the

applicability of this theorem to the empirical process 1√
T

∑T
t=1 [L (u (Zt,θ))− EF [L (u (Z0,θ))]].

The limiting Gaussianity follows by Rio (2017, Cor 4.1). An analogous analysis to the one

leading to (41)-(42) then implies (42) via Assumption 4.2.1.(i)-(v). The form of the covari-

ance kernel of the limit process follows by taking into account West and McCracken (1998,

Lemmata 4.1-2) via Rio (2017, Cor 4.1).

Working as in the proof of Lemma 2 of El Ghouch et al. (2011), it is found that, for any

L ∈ L,

EgT [L (εi ,t)]−EF [L (ui,0)] =
T

T −B + 1
(EFT [L (εi ,t)]− EF [L (ui,0)])− 1

T −B + 1
(U1,B + U2,B) ,

with

U1,B := B−1

B∑
j=1

(B − j) (L (εi ,j )− EF [L (ui,0)]) ,

and

U2,B := B−1

B∑
j=1

(B − j) (L (εi ,T−j+1 )− EF [L (ui,0)]) .

L can be chosen as uniformly bounded, hence, from (38) and uniform integrability,

√
T (E [L (εi ,t)]− EF [L (ui,0)]) = o (1) ,

uniformly in L, and, thereby, due to Assumption 4.2.1.(vii), 1√
T
E (U1,T ) = o (1) uniformly in

54



L. Now, due to the uniform boundedness of L and

1

TB2
Var

(
B∑
j=1

(B − j) (L (εi ,j )− EF [L (ui,0)])

)

=
1

TB2

B∑
j,j′=1

(
(B − j) (B − j′)Cov (L (εi ,j ) , L (εi ,j ′)) + o

(
1√
T

))

=
1

TB2

B∑
j,j′=1

(B − j) (B − j′)Cov (L (εi ,j ) , L (εi ,j ′)) + o (1) ,

where the remainder term is o (1) uniformly in L. Then, due to Assumption 4.2.1.(i)-(iii),

the absolute value of the first term in the previous display is almost surely less than or equal

to
supθ∈B̄θ0

(η)

TB2

∣∣∣∣∣
B∑

j,j′=1

(B − j) (B − j′)Cov (L (Ki (Zj,θ)) , L (Ki (Zj′ ,θ)))

∣∣∣∣∣
and due to stationarity the latter is less than or equal to

B sup
θ∈B̄θ0

(η)

Var (L (Ki (Z0,θ)))+ sup
θ∈B̄θ0

(η)

B
B∑
j=1

|Cov (L (Ki (Z0,θ)) , L (Ki (Zj,θ)))|=o(T ),

uniformly in L, due to the uniform boundedness of L, uniform integrability, the proof of

(38), and Davydoff’s inequality (see Rio, 1993). An analogous result holds for U2,B. Then

(21) follows from (38) by noting that T ∼ T −B + 1.�

Lemma A.3. Under Assumption 4.2.1.(i)-(vii) for j = 1, 2 and in addition Assumption

4.2.1.(ix) for j = 0, as T →∞ and for any p > 0:

max
1≤s≤T−B+1

sup
L∈L,θ∈B̄θ0

(η)

∥∥∥∥∥
(
B−1

B∑
s=1

L
(
u
(
Z?
k,j,θ

)))
i

∥∥∥∥∥ = Op

(
T

1
p

)
, (43)

with Z?
k,j denoting the kth element of the jth block (Zj, . . . , Zj+b−1), and L (u) denoting

(L (ui))i=1,...,M .

Proof of Lemma A.3. As in the proof of Lemma 2 of El Ghouch et al. (2011), there exists
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some C > 0 such that

max
1≤j≤T−B+1

sup
L∈L,θ∈B̄θ0

(η)

∥∥∥∥∥B−1

B∑
k=1

L
(
u
(
Z?
k,j,θ

))∥∥∥∥∥ ≤ C max
1≤t≤T

sup
L∈L,θ∈B̄θ0

(η)

‖L (u (Zt,θ))‖ ,

and, thus, for any ε > 0,

P

[
max

1≤t≤T
sup

L∈L,θ∈B̄θ0
(η)

‖L (u (Zt,θ))‖ > εT
1
p

]
≤

T∑
t=1

P

[
sup

L∈L,θ∈B̄θ0
(η)

‖L (u (Zt,θ))‖ > εT
1
p

]

≤ 1

εp+δT
δ
p

E

( sup
L∈L,θ∈B̄θ0

(η)

‖L (u (Zt,θ))‖

)p+δ
 = o (1) ,

due to stationarity, the inequality of Markov, and the uniform boundedness of L, which

implies that for any p, δ > 0, E
[(

supL∈L,θ∈B̄θ0
(η) ‖L (u (Zt,θ))‖

)p+δ]
< +∞.�

Lemma A.4. Suppose (Xn
i )1≤i≤n,n∈N? is a “row-wise” strictly stationary and strongly

mixing triangular array of random variables with mixing coefficients (αni )1≤i≤n,n∈N?, such that

for some δ > 1, 1
n

∑n
i=1 (αni )1− 1

δ → 0 as n→∞. Furthermore,M is a totally bounded (w.r.t.

the uniform metric) set of bounded real functions on R×Θ, that is also equi-Lipschitz w.r.t.

Θ, with Lipschitz coefficients independent of the first argument, Θ is a non-empty compact

subset of some Euclidean space, and E [m (Xn
1 , θ)] → Lm,θ as n → ∞ and Lm,θ ∈ R for all

m ∈M and θ ∈ Θ. Then for any ε > 0,

P

[
sup
m,θ

∣∣∣∣∣ 1n
n∑
i=1

m (Xn
i , θ)− Lm,θ

∣∣∣∣∣ > ε

]
= o (1) .

Proof of Lemma A.4. The total boundedness of M implies that

Yi,n := supm,θ |m (Xn
i , θ)− E [m (Xn

1 , θ)]| is a well defined uniformly bounded random vari-

able (see Par. 1.7 of van der Vaart and Wellner, 2000). The equi-Lipschitz property ofM and

the independence of the Lipschitz coefficients of the first argument, implies that E [m (Xn
1 , θ)]
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is equicontinuous (in n) w.r.t. θ. This and the point-wise convergence of E [m (Xn
1 , θ)] imply

that supm,θ |E [m (Xn
1 , θ)]− Lm,θ|

2 → 0 as n→∞. Th. 14.1 of Davidson (1994) implies that

the array (Y n
i )1≤i≤n,n∈N? is “row-wise” strictly stationary and strongly mixing with the same

mixing coefficients. Then for arbitrary ε > 0,

P
[
supm,θ

∣∣ 1
n

∑n
i=1 m (Xn

i , θ)− Lm,θ
∣∣ > ε

]
≤

E
[
supm,θ(

∑n
i=1m(Xn

i ,θ)−Lm,θ)
2
]

ε2n2

≤ 2Var[
∑n
i=1 Yi,n]

ε2n2 +
2 supm,θ|E[m(Xn

1 ,θ)]−Lm,θ|2
ε2

≤ 2
∑n
i=1 Cov[Yi,n,Y1,n]

ε2n
+ o (1) ≤ C

∑n
i=1(αni )

1+δ

ε2n
+ o (1) = o (1) ,

where the first inequality in the previous display follows from the inequality of Markov, the

second from the inequality of Jensen, the third from stationarity and the definition of Lm,θ,

and the fourth from Davydoff’s inequality (see Rio, 1993) and the fact that Y1,n is a bounded

random variable, with C = 24 supn E
[
|Y1,n|2δ

] 1
δ .�
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Table I: Evaluating Exchange Rate Forecast Models. The table shows the ELR
test statistic for every combination of the three forecast models (SP, FP, MA), three loss
function classes (GL, CL, SCL) and six currencies (CAD, FF, DM, JPY, CHF, GBP). Daily
data from Thomson Reuters Datastream are used for the sample period from January 1,
1992, to February 28, 2002. The forecasts horizon is three months. The block size of the
ELR test is set at 63 days. The number of degrees of freedom for the asymptotic chi-square
test is either 1 or 2, depending on the number of models for which optimality cannot be
rejected with near certainty. Asterisks are used to indicate the level of significance: 0.10 (*),
0.05 (**) or 0.01 (***).

Class Model CAD FF DM JPY CHF GBP

GL
SP 0.00 0.00 0.00 0.00 0.00 0.00
FF 0.00 0.00 0.00 0.00 0.00 0.00
MA 0.00 0.00 0.36 0.00 0.00 0.84

CL
SP 0.00 0.00 0.00 0.00 0.00 0.00
FF 132.67*** 0.00 1.54 0.00 0.00 0.00
MA 8.21*** 2.94* 7.96** 3.49* 8.34*** 21.37***

SCL
SP 0.00 0.00 0.00 0.00 0.00 0.00
FF 132.67*** 4.30** 8.24*** 0.00 7.48*** 0.00
MA 11.72*** 7.79*** 20.12*** 13.07*** 14.90*** 27.04***
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Table III: Forecast Optimality Classification. The table shows the number of SD
optimal models and the percentage of such models out of the total number of models, for both
the original data set and the updated data set and the three loss function families: General
Loss (GL), Convex loss (CL) and Symmetric Convex Loss (SCL). Models are classified as
optimal if OPA is not rejected at the given significance level (α).

Panel A: 1961Q1-2000Q4
α = 1.00 α = 0.10 α = 0.05 α = 0.01

GL 2,500 68.36% 2,500 68.36% 2,500 68.36% 2,500 68.36%
CL 85 2.32% 1,020 27.89% 1,188 32.48% 1,532 41.89%
SCL 31 0.85% 632 17.28% 763 20.86% 1,007 27.54%

Panel B: 1961Q1-2017Q1
α = 1.00 α = 0.10 α = 0.05 α = 0.01

GL 3,641 99.56% 3,641 99.56% 3,641 99.56% 3,641 99.56%
CL 73 2.00% 994 27.18% 1,132 30.95% 1,410 38.56%
SCL 13 0.36% 531 14.52% 658 17.99% 895 24.47%
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Table IV: Logit Regression. Shown are the estimates of Logit regressions for a dummy
variable which takes a value of one when the forecasts model is fully SD optimal in sample
(the ELR test statistic equals zero). The explanatory variables are DPC , or a dummy that
takes a value of one when there is at least one PC regressor, NPC , which is the number of PC
regressors, and NAll, denoting the total number of regressors. The t-statistics are computed
based on heteroskedasticity-adjusted standard errors. Also shown are the McFadden pseudo
R-squared and the fraction of correctly classified cases (Cqt). Results are shown for both the
original data set and the updated data set and for the three loss function families: General
Loss (GL), Convex loss (CL) and Symmetric Convex Loss (SCL).

Panel A: 1961Q1-2000Q4
Var Coeff t-stat p-value R2 Cqt

GL

DPC 0.52 2.93 0.003
NPC -0.32 -2.35 0.019
NAll -1.11 -10.20 0.000

0.030 0.687

CL

DPC 2.62 4.04 0.000
NPC -0.18 -0.39 0.697
NAll -1.72 -6.92 0.000

0.150 0.984

SCL

DPC 1.23 2.57 0.010
NPC -0.03 -0.09 0.931
NAll -0.75 -2.75 0.006

0.040 0.978

Panel B: 1961Q1-2017Q1
Var Coeff t-stat p-value R2 Cqt

GL

DPC N/A N/A N/A
NPC N/A N/A N/A
NAll N/A N/A N/A

N/A N/A

CL

DPC 1.37 2.76 0.006
NPC 0.28 0.80 0.422
NAll -0.71 -2.44 0.015

0.064 0.980

SCL

DPC 1.76 1.54 0.123
NPC 0.28 0.37 0.713
NAll -1.05 -1.52 0.129

0.072 0.996
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