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Abstract

Given the incresaing importance of central counterparty clearinghouses (CCPs) to
developments of modern financial market infrastructure governed by the CPSS-IOSCO
PFMI standards, in this study we look at the the risk management practices of select
large CCPs across jurisdictions as they relate to their use of risk-based margin models
and collection of margins, in particular whether margins are collected by CCP from
clearing members on gross versus net basis. All the CCPs considered here except Eurex
use some variant of SPAN to evaluate the risk of a portfolio of positions and compute
the applicable margins for exchange traded derivatives. The analyses to sensitivity
of margins to SPAN parameters shows that given the design of SPAN, certain positions
(like short butterfly) may be designed to “fall between the cracks” and escape stringent
margins. At the same time, we have shown that it is not difficult to improve SPAN
parameters and fix its observed inadequacies. In the second part of the study, we
provide a quantitative comparison for evaluating the impact of collecting margins in
a gross versus net system with the margin period of risk alternatively set at one and
two days. We also analyze the trade-offs in gross versus net margining in (a) the
scenario where a large client of a clearing member defaults idiosyncratically and (b) in
the scenario where defaults arise out of ‘crowded trades’. We are able to describe the
conditions under which the higher MPOR does or does not offset the risks induced by
net margins.

Keywords: Central counterparty clearinghouses, Financial market infrastructures,
Margins, Risk management, SPAN



1 Introduction

One of the striking features of the 2008 global financial crisis (GFC) was that while banks
and financial institutions of all kinds and sizes faced distress, derivatives clearing corpo-
rations, or central counterparty clearinghouses (CCPs) as they are now known, came out
relatively unscathed. Whether it was a consequence of stringent collateral requirements or
superior risk management practices, since then the importance of clearinghouses to reduce
systemic risk has taken centerstage among the regulators (Domanski et al., 2015). Re-
flecting a clear shift in taxpayer preference away from bailout to resolution, the thinking
behind mandating central clearing of standardized over-the-counter derivatives by both the
the Dodd-Frank Wall Street Reform Act as well as the European Market Infrastructure
Regulation (EMIR) runs that rigorous collateral and netting requirements would reduce
interconnectedness of the financial system and stop short any contagion in its tracks (Roe,
2013).

The evidence suggests that the risk management in the OTC space has indeed improved
hugely post-GFC (Acharya and Bisin, 2014), with netting and initial and variation margin
becoming a standard (Faruqui et al., 2018). However, there are concerns that mutliple
CCPs may indulge in race to the bottom to grab market share which may help dealers
but may still be destabilizing with tail risk being an externality for all participants (BIS,
2010). The competition between the CCPs has also raised concerns about scarcity of high
quality collateral (Duffie et al., 2015; Li and Marin, 2016) giving rise to wrong way risk
exposures (Pirrong, 2011). From a systemic risk point of view, there are also concerns about
destabilizing affects of procylicality of frequent margining (Brunnermeier and Pedersen,
2008) and having created a single point of failure in CCPs (Duffie, 2015).

Even so, given the regulatory developments, the CCPs today have become integral to all
developments of modern financial market infrastructure governed by the CPSS-IOSCO!
Principles for Financial Market Infrastructures (PFMI) adopted by the Group of Twenty
countries in 2012. Given both the increasing importance of CCPs as well as the associated
concerns makes the study of risk management practices of CCPs to evolving PFMI standards
both relevant and timely.

We study the existing practices of clearing corporations in four different jurisdictions: the
United States (Chicago Mercantile Exchange), Europe (LCH and Eurex), East Asia (Hong
Kong Exchanges and Clearing) and Australia (Australian Stock Exchange) on their key
risk management practices in the light of the evolving PFMI standards as they relate to
risk-based margining and implications of how margins are collected by CCP from clearing
members, that is whether margins are collected on a gross or net basis. As a methodological
contribution, we critically evaluate the parameters underlying the widely-used SPAN margin-
ing model for exchange traded derivatives (ETDs) and analyze the trade-offs in gross versus
net margining.

We find that while large CCPs have broadly similar practices (partly ensured by compli-

!Committee on Payment and Settlement Systems (CPSS) and the Technical Committee of the Interna-
tional Organization of Securities Commissions (IOSCO); see https://www.bis.org/cpmi/publ/d101.htm
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ance with PFMI regulations), there are some critical differences between the various CCPs
studied by us:

1. The European CCPs (following EMIR) used to set margins to cover a two-day price
risk, that is with a margin period of risk (MPOR) of 2 days until 2015. Since 2016,
European CCPs now require setting margins using one-day MPOR similar to US
CCPs (following regulations of the Commodity Futures and Trading Commission).
This would tend to reduce margins in European CCPs by a factor of v/2 ~ 1.4.

2. The US CCPs collect margins on a gross basis (aggregate of margins on client wise
positions) while the European CCPs use net margins (margin on the net position of
all clients). This would lead to higher margins in the US CCPs, but the magnitude
of this effect would depend on the distribution of client positions.

3. All the CCPs except Eurex use some variant of SPAN to evaluate the risk of a port-
folio of positions and compute the applicable margins. While SPAN is known to be
a coherent risk measure (Artzner et al., 1999), it is also a very old system that has
not been updated to reflect the massive improvements in computing power and the
increasing complexity of trading strategies. Eurex on the other hand uses a different
methodology (Prisma) which is arguably more modern.

4. On the flip side, Prisma is a proprietary methodology that is quite opaque compared
to SPAN.

To provide a quantitative comparison (not found elsewhere in the literature to our knowl-
edge), we evaluate the impact of gross versus net margins with MPOR alternatively set at
1 and 2. The impact of a higher MPOR versus margining on a net basis might partially
offset each other, and it is not obvious that either the European or the US CCPs are more
lax than the other. An important methodological contribution of our paper is to analyze
the trade-offs in gross versus net margining in (a) the scenario where a large client of a
clearing member defaults idiosyncratically and (b) in the scenario where defaults arise out
of ‘crowded trades’ (Menkveld, 2017). We are able to find the conditions under which the
higher MPOR does or does not offset the risks induced by net margins.

The last two differences also partially offset each other. It could be argued that proprietary
models allow the innovator to internalize the social gains from the development of a more
sophistical risk management methodology. On the other hand, proprietary models make
it difficult for external observers to even determine whether the new model achieves any
significant improvement in risk management. An important contribution of this paper is a
detailed review of how SPAN parameters influence the treatment of complex positions de-
signed to “fall between the cracks” and escape stringent margins. This leads us to conclude
that it is relatively straightforward to improve SPAN to fix its observed inadequacies. To
our knowledge, both a detailed review of SPAN parameters as well as describing trade-off
between gross vs net margining, has not been done elsewhere in the literature.

After briefly describing risk and default management procedures at a typical clearinghouse
and reviewing the literature and prevailing practices on risk-based margining, we critically
review main parameters of SPAN and the trade-offs between gross and net margining as well



the context of crowded trades. The final section concludes and points some outstanding
issues for further research.

2 Risk management in CCPs: A brief overview

While requiring OTC derivatives to be cleared through CCPs is a relatively recent develop-
ment, there is a long history of CCPs in the United States (Gorton, 1985). Gregory (2014)
describes the process of clearing in both exchange-traded as well as OTC derivatives in a
modern CCP in some detail. Even so, it is useful to lay out the main elements of clearing
to establish the terminology for further discussion.

Given the focus on exchange-traded products in this study, we’ll restrict our focus to the
CCPs whose predominant business is providing a marketplace for clearing of standardized
futures and options. In this context, following Bernanke (1990), it is useful to make a
distinction between the function of a CCP as a bank and an insurance company.

By dealing only in homogeneous/standardized products, like a bank, CCP provides liquidity
and reduced transaction costs while operationally also ensuring contract delivery and trans-
fer of funds. On the other hand, by standing as a counterparty to all transactions, like an
insurance company, it guarantees contract performance for both counterparties. Although
it is impossible to separate CCPs banking and insurance function (ability to guarantee
performance depends on availability of funds), for the purpose of this study we restrict
our attention to the credit risk and information asymmetry associated with providing the
insurance function.

Because a CCP is both long and short the same asset/portfolio in each trade, unless one
of the counterparty defaults, it bears no market or liquidity risk. To protect itself against
the credit risk and adverse selection and moral hazard (Pirrong, 2011), CCPs charge its
members insurance premia in a variety of ways.

To begin with, when a contract is cleared, the CCP charges an initial margin, typically in
the form of a liquid, high quality collateral (lower quality collateral are also often acceptable,
but only with haircuts). Using historical data on asset returns, volatility and correlations,
and depending on the position size, the quantum of initial margin is set to cover losses in
all but statistically extreme loss scenarios (with a probability of less than 0.3% currently).

While the initial margin is designed to cover potential future losses, CCPs also regularly
(usually daily, but sometimes more frequently) collect variation margin capturing daily
mark-to-market losses/gains which it transfers between the counterparties. This is as much
a book-keeping function as a risk management function. During extreme market moves and
in the event of any default, initial margin may not be enough. In those circumstances, a
CCP is no more protected from market and liquidity risks. It is then the responsibility
of the CCP to unwind both the defaulting member’s positions as well as the associated
collateral. For such circumstances, CCPs mutualize losses down to its clearing members by
what is called a default waterfall process (Gregory, 2014; Pirrong, 2011).



Given the focus of our study, it is useful to understand risk management function at a
typical CCP as divided between defaulter and non-defaulter pays model:

1. Margins (Defaulter Pays Model): The idea of collecting upfront margins in the form
of collateral from all parties is to ensure that the defaulter pays for its losses. This
works adequately when the price changes are not extreme. As long as the collateral
is adequate to cover the loss, there is no need for anybody else to bear losses. For
example, when Lehman Brothers failed, the major CCPs (CME in the US and LCH in
Europe) suffered no losses because the margins provided by Lehman were adequate to
cover all losses on the Lehman positions even in a situation of extreme market stress.
For this reason, margins are characterized as a defaulter pays or polluter pays model.

2. Default Waterfall (Non Defaulters Pay Model): As Bernanke (1990) points out, even
if price changes are not extreme, the defaulter pays model alone may be insufficient.
A CCP also needs to monitor the trades of its members to reduce adverse selection
(CCPs can only monitor trade of its members, and not necessarily the clients of the
members). If monitoring were perfect, in theory loss-sharing rules could be set to
ensure that defaulters bear most of the cost (Baer et al., 1995). The real costs of
monitoring imply that loss-sharing rules must be set more broadly, and this leads
most CCPs to mutualize losses. Each clearing member is required to contribute to
what is called a guaranty fund which can be tapped into by a CCP if required. So
if losses exceed the collateral, some of the losses have to be borne by non-defaulters
from their contribution to the guaranty fund. The Default Waterfall defines the loss
allocation to: the clearing member who was clearing the trades of the defaulting
client, other non defaulting clearing members (default fund contributions), the CCP
itself (skin in the game; see Saguato (2017)), non defaulting clients of non defaulting
members (variation or initial margin haircutting).

The CCP literature tends to favour using the defaulter pays model to the maximum extent
possible (Roe, 2013; Peirce, 2016), and restricting loss allocation to extreme scenarios where
the margin framework proves to be inadequate. However, Pirrong (2011) has argued that the
margin system actually reallocates losses from the CCP to other creditors of the defaulter,
and that any financial system that allows leverage is necessarily a non-defaulter pays model.

2.1 PFMI: Margin models and netting

The PFMI document contains 24 principles that apply to all areas of clearing, ranging from
legal and governance issues to margins and credit risk management. Given the focus of this
study, however, we restrict our attention to their risk management practices as they relate
to their use of risk-based margin models and collection of margins, in particular whether
margins are collected by CCP from clearing members on gross versus net basis. It is in that
context that prevailing practices of different CCPs are reviewed and compared below.



3 Margining

3.1 Risk models for margining: SPAN and other approaches

Other than Eurex, all other CCPs covered in this study compute initial margins for ETDs
based on the Standard Portfolio Analysis of Risk (SPAN) approach developed by the CME
in 1989. Its popularity with practitioners and regulators lies in its simplicity and ease of
implementation (CME provides a free PC SPAN software). It is also theoretically attractive
as it is also a coherent risk measure (Artzner et al., 1999).

SPAN approach calculates margins on portfolio basis, requiring combing futures and options
with the same underlying referred to as the ‘combined commodity’. In words of Artzner
et al. (1999, pg. 212),

The calculation can be viewed as producing the maximum of the expected loss
under each of sixteen probability measures. For the first fourteen scenarios the
probability measures are point masses at each of the fourteen points in the space
of securities prices. The cases of extreme moves correspond to taking the convex
combination (0.35, 0.65) of the losses at the “extreme move” point under study
and at the “no move at all” point (i.., prices remain the same). We shall call
these probability measures “generalized scenarios.”

The collection of scenarios across all market conditions constitutes what are called ‘Risk
Arrays’. The specification of the scenarios depend on the SPAN parameters which each
exchange/CCP must decide on depending on the extent of risk coverage they seek. The
main SPAN parameters constitute the following:

1. The number and specification of scenarios underlying the risk arrays, referred to as
the scanning grid

2. The extent of price movements possible in each scenario, referred to as the Price Scan
Range (PSR)

3. The change in volatility (applied as a factor/shift applied to prevailing implied volatil-
ity) in each scenario, referred to as the Volatility Scan Range (PSR)

The original CME SPAN consisted of 16 scenarios with PSR and VSR as given in Table 1.
The scenario-based margin based on SPAN is set as the maximum of weighted loss over the
risk array for a portfolio. This is called scan risk. Its parameters were aimed to provide a
95-99% coverage originally, but parameters can be set to provide any level of coverage.

[Table 1 about here]

For calculation of the final margin amount, SPAN allows for adjustments to scan risk to-
wards what are called Intra-Commodity Spread, Inter-Commodity Spread, Super Inter-
Commodity Spread and Inter-Exchange Spread Credit. After allowing for adjustments, the
total margin is set as the sum of mark-to-market gain/loss in the position and the maximum



of scan risk and the Short Option Minimum charge?

Even though exchanges are free to decide on the parameters, and CME has recently modified
the definition of last two scenarios (see Table 2), all users of SPAN in the study continue to
essentially use Table 1 to calculate the scan risk.

[Table 2 about here]

3.2 Alternatives to SPAN: Eurex

The popularity of SPAN notwithstanding, there are its criticisms in that the various spread
adjustments are not only ad-hoc and cumbersome but also complex (Cotter and Dowd,
2006). Also, the way it has evolved over time makes its performance difficult to back-test
(Alexander et al., 2019).

The most predominant exchange which does not uses SPAN to estimate margins is Eurex
which uses its proprietary VaR-based portfolio margining approach called Prisma. Although
initially only applied to interest rate and credit derivatives, since 2015 use of Prisma also
covers ETDs. While the details of Prisma are not available publicly, based on its own
publications, it provides more effective netting of risks than SPAN (Eurex, 2018). According
to Eurex (2018), it uses a variant of filtered historical simulation based VaR to estimate
margins while allowing for more general dynamics for implied volatility surface (beyond
only parallel shifts covered in SPAN), break-down in correlations and the term structure of
interest rates.

According to Eurex (2018), an important benefit and advantage of Prisma over SPAN is
the integration of its margining with the default management process. As we discuss later,
an important consideration in default management is how the positions are netted at the
clearing member level and different jurisdictions have different requirements on that. Prisma
divides positions into pre-defined “liquidation groups” which share common risk factors, and
risk offsets are allowed only within a group. Also, margin period of risk for portfolios is
aligned with the timelines implicit in the default management process.

Although Eurex’s approach is arguably more modern and uses more sophisticated statisti-
cal machinery in handling multiple underlyings, it is also true that it was the VaR-based
approaches that failed during the GFC (Salmon, 2009), and historical simulation is prone to
dangers (Pritsker, 2006; Gurrola-Perez and Murphy, 2015). VaR is also known to be more
risk sensitive than SPAN’s ad hoc way of dealing with correlations, and as argued before, a
big plus in favour of SPAN is that it is coherent risk measure whose properties and limitations
are better understood than any proprietary black-box model. At the same time, for CCPs
which are also starting/going to clear OTC derivatives, Eurex’s approach to handling mul-
tiple underlyings and tying the risk-based margining with the default management process
is attractive

There have also been alternatives to SPAN offered in the literature. In one of the first
studies on setting margins in the Finnish stock index futures market, Booth et al. (1997)

2See https://www.cmegroup.com/clearing/files/span-methodology.pdf for details.
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proposed an extreme value theory based margining approach which provides theoretical
margin violation probabilities which closely match the empirical distribution of returns.
Similarly, Cotter and Dowd (2006) apply the Generalised Pareto distribution to return
distributions for setting margins and argue spectral risk measures are superior in that they
allow for reflecting a CCP’s attitude towards risk.

More recently, Alexander et al. (2019) proposes median tail loss as an alternative to VaR
and SPAN and using data for a variety of underlyings show that their proposed measure is
as easy to implement and back-test. Dionne et al. (2015) proposes a liquidity adjusted VaR
measure by taking into account the endogenous liquidity associated with order size. Lam
et al. (2010) propose a margining scheme which relies on volatility forecasting which keeps
the margin stable, at level desired by the CCP. However, although volatility forecasting
remains an active area of research within financial econometrics, as Houllier and Murphy
(2017) argue, practicalities of margining at CCPs necessarily require approaches which are
more robust than complex.

An alternative proposed in the literature that has been actively adopted by CCPs, including
Eurex, is the filtered historical simulation VaR (Barone-Adesi et al., 1999). Gurrola-Perez
and Murphy (2015) interprets it as an estimate of VaR risk conditional on more recent
market conditions. While not something we explore in this study, FHS has been criticized
for leading to margins which are more procylical than its ‘unfiltered’ counterparts.

Despite the move to more sophisticated VaR-based approaches for calculating margins for
OTC products and selectively for exchange-traded derivatives, SPAN remains in use by more
than 50 exchanges and regulatory bodies around the world. Clearing members and market
participants still find it familiar and easy to understand despite its unwieldiness (Burnham,
2018). While copulas are probably the best way to analyze with multiple underlyings, that
is outside the scope of our paper. As our modest contribution, given SPAN’s popularity
worldwide as the margining model for ETDs, we proceed to discuss SPAN in detail for a
single underlying.

3.3 Sensitivity to changes in SPAN parameters

Our focus here is on the three parameters underlying the calculation of scan risk, namely
the specifications of PSR and VSR and design of the scanning grid.

To understand the sensitivity of each choice, the calculation of risk arrays and estimation
of scan risk for all the portfolios is made in the sense of partial derivatives, so for the most
part the three SPAN parameters are changed one at a time.

In particular, the review of calculation of risk arrays is done for select portfolios of futures
and options on Hang Seng Index 200 of HKEx on May 14, 2019 (Table 3). The contracts
considered have expiries on May 30 (14 days to maturity), June 27 (44 days to maturity) and
September 27, 2019 (136 days to maturity). All valuation across the 16 scenarios are done
using the Black (1976) model assuming that options are priced consistently with respect to
corresponding futures contracts. The prevailing Hong Kong Libor rate is used as a proxy
for rate of interest (using linear interpolation).



[Table 3 about here]

Margins at HKEx, just like in CME, are set in absolute terms. For the purpose of analysis
here, however, it is useful to work in terms of number of shifts of standard deviations. The
current margin on HSI futures is set at close to 90000.% With a contract size of 50, historical
daily volatility of returns on HSI of about 1.0 - 1.5% (depending on the sample), spot price
of close to 28000, this translates to a margin of 4 - 5 times daily volatility. A factor of 5o
then forms the base case for our comparisons. In particular, the scan risk is compared for
each portfolio under different choices of a) volatility factor: 4, 5, 6, and 7, b) VSR shifts:
6%, 8%, 10%, 12% and c) fineness and number of scenarios in the scanning grid.

Table 4 represents comparison of scan risk for the 12 portfolios for volatility scaling factor
(VSF) set at 3, 4, 5 and 6 respectively. For each choice of VSF, the location of the scan
risk (maximum loss over the risk arrays) is also identified. So, for example, for portfolio
number 11 with VSF set at 6 (column 5), the maximum loss was at —60 and so on. For
most cases, the maximum loss occurs at £1 x VSF and not at £2 x VSF because of the
less than 1 weight (of 0.35) on the last two scenarios.

[Table 4 about here]

Broadly the impact of VSF on scan risk is clear: the higher the scaling factor higher the
scan risk (except for calendar spreads where the long and short positions are being offset
differently with time). This is expected, as a higher volatility scaling factor allows capturing
extreme/stress events beyond +50. The impact is the largest for short options positions.

Table 4 represents comparison of scan risk for the 12 portfolios for volatility scaling factor
(VSF) set at 3, 4, 5 and 6 respectively. For each choice of VSF, the location of the scan
risk (maximum loss over the risk arrays) is also identified. So, for example, for portfolio
number 11 with VSF set at 6 (column 5), the maximum loss was at —60. For most cases,
the maximum loss occurs at 1 x VSF and not at +2 x VSF because of the less than 1
weight (of 0.35) on the last two scenarios.

[Table 4 about here]

Broadly the impact of VSF on scan risk is clear: the higher the scaling factor higher the
scan risk (except for calendar spreads where the long and short positions are being offset
differently with time). This is expected, as a higher volatility scaling factor allows capturing
extreme/stress events beyond +50. The impact is the largest for short options positions.

Table 5 represents comparison of scan risk for the 12 portfolios for volatility shift (VSh) for
VSR calculation set at 6%, 8%, 10% and 12% respectively. As earlier, for each choice of
VSh, the location of the scan risk (maximum loss over the risk arrays) is also identified. So,
for example, for portfolio number 11 with VSh set at 10% (column 5), the maximum loss
was at —5o and so on (these results are conditional on VSF set at 5.) Again, as earlier, the
impact of large change in level of volatility is the largest on portfolios with short options
positions.

3Source: https://www.hkex.com.hk/Services/Clearing/Listed-Derivatives/Risk-Management/
Margin/Margin-Tables?sc_lang=en
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[Table 5 about here]

Both the earlier sensitivities are estimated in the sense of partial derivatives, i.e. one change
at a time. Next the comparison is made by changing both VSF and VSh together for the
following combinations: (5,8%), (5,10%), (6,8%) and (6,10%). The results are presented
in Table 6. There is clearly no secular evidence on relative importance of either the VSF
or VSh for portfolios with short positions - for some portfolios extremes seem to matter
more (high VSF), and for others level of volatility is more important (high VSh). It should
be added that a +120 move and a jump in volatility by 10% in one day are by definition
extreme/stress events with low ex-ante probabilities. Nevertheless, scan risks under such
extreme scenarios are useful reference points.

[Table 6 about here]

The design of scanning grid affects how finely and uniformly risk arrays are calculated. The
standard list of scenarios as in Table 1 has steps of +1/3 to +1. There are a variety of
ways in which one could modify the scanning grid, but from a CCP point of view there is a
clear trade-off between practicality and robustness on one hand and precision on the other.
Keeping that in mind two modifications are considered:

1. Making the grid finer: Here we consider fineness of +£1/3, £1/5, £1/10, +1/30. Given
the gaps with which strikes are set in practice, going finer than 1/30 is probably an
overkill.

2. Making the grid more uniform: In the standard SPAN grid after 4+1, the final two
scenarios are +2 with weight 0.35. A more uniform grid could consider scenarios
between 1 and 2 with declining weights. However, if the weights are chosen to decline
uniformly beyond 41, the weights on extreme events at +2 scenarios would decline
with the fineness of the grid. To prevent this from happening for this exercise, a lower
bound of 0.35 is set for scenarios beyond +1 to facilitate comparison with existing
practices. As an illustration, Table 7 presents a uniform grid with a fineness of £1/5.

[Table 7 about here]

Figures 1 and 2 presents comparisons of scan risk over a uniform grid steps of £1/3 and
+1/30 (results with other finer gradations available on request). For all portfolios plotted
in the two figures, VSF is set at 6 and VSh is set at 10% except for the ‘Margins Base Case’
case where VSF is set at 5 and VSh is set at 6%, which is considered to provide a reference
point for comparisons with the existing grid with sixteen scenarios.

In both Figures 1 and 2, the following are plotted:
e Negative of the payoff function from the portfolio: ‘-Payoff’, as cross x
e Risk array with the uniform grid: ‘Risk Array Uniform Grid’, as a circle as O
e Scan risk with the default grid: ‘Margins Default Grid’, as a filled square ®

e Scan risk with the default grid, VSF of 5 and VSh of 6%: ‘Margins Base Case’, as a
filled triangle A



e Scan risk with the uniform grid: ‘Margins Uniform Grid’, as filled circle ®
[Figure 1 about here]
[Figure 2 about here]

For all cases where a) either extremes are important (portfolios 9 to 12) or low volatility is
important (portfolio 6) the impact shows up. For portfolio 6 for instance (short butterfly),
at a fineness of +1/3 in Figure 1 does not even allow the payoff to reflect that it is a butterfly
payoff with the middle strike lying within the coarsely designed grid. Only a finer grid as in
Figure 2 (£1/30) reflects that portfolio 6 is indeed a short butterfly. A similar observation
was made by Varma (2009).

In addition, note that for all short option positions potential losses are larger than the
margin in all cases considered. This explains the need for an additional ‘top-up’ for short
positions/portfolios, like the Short Option Minimum Charge currently being imposed by all
CCPs using SPAN for ETDs.

Note that a finer grid does not necessarily imply that margins would also be always neces-
sarily higher. The weights applied along the scanning grid matter equally. For portfolio 11
for example, scan risk with a finer grid is a bit lower compared when a coarse grid is used
because of the higher weight. Nevertheless, the scan risk is higher in both the cases when
compared to the default scanning grid with existing VSF and VSh.

While the analyses to sensitivity of margins to SPAN parameters shows that given the design
of SPAN, certain positions (like short butterfly) may be designed to ”fall between the cracks”
and escape stringent margins. At the same time, we have shown that it is indeed not difficult
to improve SPAN parameters and fix its observed inadequacies. Of course, it needs to be
mentioned that we have ignored spread adjustments in our analysis.

4 Gross versus net margins

In 2015, European Securities and Markets Authority (ESMA), a European Union regulatory
body issued a discussion paper (ESMA, 2015) on whether EMIR should take lead from the
US CFTC and revisit their MPOR requirements for ETDs - the time horizon for liquidation
assumed in the event of default. At the time, EMIR required an MPOR of at least 2 days
for ETDs and at least 5 days for OTC derivatives. While EMIR’s concern was that an
MPOR of 1 day required by the US CFTC may give rise to regulatory arbitrage,* the issue
of MPOR is intimately tied to ‘how’ CCPs collect margins.

As the regulations have evolved, the US based CFTC requires that margins from clients at
the level of clearing members be grossed (without netting) and deposited with the CCP. On
the other hand, the ESMA allows for both gross and net margin systems, though net margins
remains the predominant mode. While details differ, other than US CFTC mandated gross
margining, all other CCPs considered in the study permit net margining system under

“In 2016 ESMA reduced to MPOR of 1 day for ETDs; see https://www.esma.europa.eu/press-news/
esma-news/emir-esma-proposes-one-day-margin-period-risk-ccp-client-accounts
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different account structures.® Gregory (2014) provides a detailed description of variety of
account structures popular in US and Europe.

Although there is no previous research on this topic to our knowledge, whether a clearing
member collects margins on a gross versus net basis has important implications for both
the margins collected at the CCP as well as the default waterfall. We restrict our attention
here to the implications of gross versus net margins. Our contribution on this aspect is
related to the work of Ghamami (2015) and Bielecki et al. (2018) who study the dynamics
of default waterfall process.

4.1 Impact of gross versus net margins for different MPOR: The context

In a gross margin system, the CCP collects margins from the clearing member based on
the sum of individual margins required based on each client’s position, without netting of
exposures between clients. In a net margin system, on the other hand, the CCP collects
margins based on the netted exposures in the clearing member’s account. Note that the
clearing members themselves are permitted to collect margins from their clients on a gross
basis, so in a net margin system members get to retain more of the client’s margins compard
to in a gross margin system. Figure 3 provides a schematic comparing the gross versus net
margining system.

[Figure 3 about here]

For example, if client A has bought 500 shares and client B of the same clearing member
has sold 300 shares, the net position of the clearing member is 200 shares long. In a net
margin system, the CCP collects margins only the net position of 200 shares. In a gross
margin system, the CCP collects margins on the aggregate gross positions of all clients; in
the above example, that would be 800 shares (500 long plus 300 short). We make a number
of reasonable simplifying assumptions to analyse the difference between the two systems:

e The CCP charges equal margins on long and short positions. This is what is commonly
observed in practice, though the skewness of the log normal distribution can be used
to justify somewhat greater margins on short positions than on long positions. The
measure proposed by Alexander et al. (2019), for example, allows for that.

e The clearing member has no significant outside liabilities, or such liabilities are junior
to the client obligations. For regulatory and other reasons, the clearing member
is typically a separate ring fenced legal entity. During the bankruptcy of Lehman
Brothers, for example, the broker dealer subsidiary was relatively insulated from the
problems at the parent.

e The clearing members’ risk management is more lenient than that of the CCP partic-
ularly for large clients. Consider the earlier net margin example of a clearing member
with two clients who are respectively 500 shares long and 300 shares short. The clear-
ing members’ risk management system would require collateral from both clients to
back their respective positions. If the collateral demanded by the clearing member

5Since LCH also operates in US jurisdiction, it has to offer both to meet CFTC regulations
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were at the same level as what the CCP itself demands, then the distinction between
gross and net margin by the CCP would become quite muted: absent any operational
risk at the clearing member level, the system as a whole would have more or less the
same level of protection in both cases. In practice, clearing members charge signifi-
cantly lower level of margins from their largest clients. It is not uncommon even in the
gross margin case, for the clearing member to collect lower margin from some clients,
and deposit margins with the CCP out of its own resources. In a net margin case, the
clearing member is even more likely to be lenient since it does not have to fund the
difference. The structural reason for the difference in behaviour of CCPs and clearing
members is that CCPs are designed and managed to make the probability of failure
extremely remote; they usually target a triple ‘A‘ rating (‘AAA‘ or ‘Aaa‘). Clearing
members by contrast might target only a single ‘A‘ credit rating. Gross Margins will
therefore be more of a Defaulter Pays Model than Net Margins.

e In the gross margin case, we assume that (a) the novation by the CCP extends only
to the clearing member and not to the ultimate clients, but (b) the CCP is not
allowed to impose initial margin haircuts on non defaulting clients of the defaulting
clearing member to cover its default losses. The actual outcome in this situation would
depend both on the bylaws of the CCP and on the segregation/commingling models
used by the clients, but our assumption is a reasonable middle ground between the
two extremes of client level novation and initial margin haircutting.

4.2 Idiosyncratic default by a large client: A Monte Carlo investigation

In this section, we discuss the scenario where a large client of a clearing member defaults
idiosyncratically. In other words, we assume that the default is not accompanied by sig-
nificant defaults by other clients at this or other clearing members. Of course, default by
a large enough client is likely to lead to a default by that clearing member. Moreover, as
the recent Nordic power spread default episode demonstrates (Nasdaq, 2018), even such
localized defaults can blow a large hole in the resources of the CCP.

As already mentioned, the greater margin leniency of the clearing member as compared
to the CCP makes the net margin system more reliant on Loss Allocation (Non Defaulter
Pays). This takes several forms:

e In the first instance, the clearing member’s capital would be used to cover the default
loss. This is the skin in the game that prevents the clearing members from becoming
too lenient in the margins that they collect from clients.

o If the loss is large enough to cause the clearing member itself to default, then non
defaulting clients of this member will suffer at least the equivalent of variation margin
haircutting since the novation by the CCP is at the clearing member level. In our
example of a clearing member with two clients X and Y who are respectively 500
shares long and 300 shares short, suppose that the stock price falls and client X (the
long) defaults, and the clearing member also defaults. Then client Y who is short
will not be able to collect the profits on her trades because her clearing member is
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bankrupt. Economically, this is the same as a Variation Margin Gains Haircutting
(VMGH), and we refer to this below as (implicit) VMGH though the term VMGH
is typically used only when it is imposed by the CCP under its own rules (outside a
normal bankruptcy process).

e If the clearing member defaults and client Y was using a completely commingled
model, she could also suffer the equivalent of an initial margin haircut. The defaulting
clearing member might be unable to return the margins posted by her. We will ignore
this risk in our analysis.

To quantify these channels of loss allocation, we need to choose values for a large number
of parameters:

e n (ten million): The sample size for Monte Carlo simulations. We are not aware
of any analytical formulas for the quantities that we are interested in. We do not
attempt any analytical approximations as these might not be reliable so far out in the
tails. The raw sample size has to be reasonably large to get enough sample of default
observations. A raw sample of ten million gives us a sample of 1000 defaults even if
the default probability is only 1 basis point (0.01%).

e t_df (4): We need a statistical model of return distributions and the correlation (more
broadly, the dependence structure) between the returns on defaulter and non defaulter
positions. As discussed in 4.2.1 below, we use student-t marginal distributions and a
student-t copula with same degrees of freedom (t_df) in both.

e pos_D (1 million): The defaulter position size. Since we assume margins to be linear
in position size, a large position size is mainly for convenience of displaying and
interpreting the results. If we use small numbers like 1 or 1000, the expected loss
numbers will be tiny fractions.

e pos ND_ratio (1): The ratio of (a) gross positions of non defaulting clients of the
clearing member to (b) gross positions of the defaulting client. If this is small, then
there is very little netting at the clearing member level, and the whole problem of net
margin becomes irrelevant.

e vol D (0.3): Volatility of defaulter returns. Since we assume margins to be linear in
risk (as measured by standard deviation), this variable like pos_D simply scales the
results.

e vol ND (same as vol.D): Volatility of non defaulters positions. The effect of this
variable is similar to that of pos_ND_ratio.

e corr (—0.4 to —0.3): Correlation of defaulter and non defaulter returns. The more
negative the correlation is, the greater the netting benefit. Netting becomes very small
if corr is positive or close to zero.

e client NW_sigmas (1): Net worth of defaulting client in number of standard devia-
tions. Even a client targeting high levels of leverage would maintain some level of net
worth to avoid premature close out of position. Since this net worth would depend
on the riskiness of the position, we measure this in number of standard deviations.
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e CM_NW_sigmas (1): Clearing member net worth in number of standard deviations. This
is partly governed by the rules of the CCP, and partly by the clearing member’s own
risk management.

e CCPmargin sigmas GM (7): CCP Margin in number of standard deviations. This
value is borrowed from Menkveld (2017) who in turn bases it on the actual data from
a large CCP.

e CCP_net_margin ratio (1 to v/2): CCP net margin to gross margin ratio. The value
of 1 is useful to compare net margins with gross margins without any other change in
the risk management system. The value of v/2 covers the case of a CCP that uses an
MPOR of 2 to compensate for net margins.

e CMmargin sigmas (5): Minimum margin collected by clearing member from client
when CCP charges low margin due to net margin.

When we set the correlation to —0.4 and assume a CCP_net margin ratio of 1 (net margins
are levied at the same rate as gross margins), we find that the default probability more than
doubles from less than 5 basis points under gross margins to more than 10 under net margins
(see Table 8). The expected loss for the CCP also more than doubles under net margins.
In addition, the loss (implicit VMGH) suffered by non defaulting members of the clearing
member also more than doubles.

[Table 8 about here]

We also observe that under both gross and net margins, the VMGH losses of non defaulting
members are about 1.75 times the losses suffered by the CCP. Non defaulting members thus
have a lot of skin in the game, though in some jurisdictions, they may be able to recover
some of these losses through default funds set up by the industry or the government (for
example, the STPC in the US).

Our next results show that an MPOR  of 2 can significantly compensate for the laxity of net
margins. Under our base case assumption of a correlation of —0.4, however, this /2 scale
up of margins is not sufficient to fully offset the weakness of net margins.

Finally, we reduce the magnitude of the correlation to —0.3 and find that an MPOR of 2
provides a rough offset for net margins. At this level of correlation, gross margin with MPOR
of 1 and margin with MPOR of 2 are more or less equivalent in all respects (probability of
default, expected loss to the CCP and expected VMGH for non defaulting clients).

4.2.1 Correlation and copulas

Particularly after the GFC, finance theory has veered round to the view that the dependence
between two underlyings is non linear. Non linear dependence can account for the high
correlation of extreme movements and the modest correlation of mild movements. It can
also account for asymmetric dependence relationships where the dependence is different in
rising and falling markets. Correlations are a poor measure of non linear dependence. For
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example if = lies between —1 and +1 and y = 22 then z and y are uncorrelated though ¥ is
perfectly dependent on zx.

Copulas provide the mathematical machinery to model dependence which may be non
linear. The linear correlation is also represented by a copula: specifically the Gaussian
copula postulates a linear relationship between two variables). The Gaussian copula has
the property that if the correlation is zero then the two variables are unrelated. This
is shown in the scatter diagram in which presents a circular pattern. There are hardly
any instances of a simultaneous extreme movement in both variables. Figure 4 is a visual
depiction of the well known fact that the Gaussian copula implies negligible tail dependence.

This must be contrasted with the non linear dependence of the t-copula shown in Figure
5. Here also the correlation is zero signifying the absence of a linear relationship. The
two variables are individually normally distributed as in the earlier diagram. However,
there is a non linear dependence. The scatter plot looks like a square and simultaneous
extreme movements in both variables are seen. If we were modelling the relationship using
correlations, then in times of market stress, it would appear that two previously uncorrelated
variables have become highly correlated. In fact, the dependence relationship has been
stable but was non linear to begin with.

To use copulas, we must fit a marginal distribution to the returns for each underlying and
apply the copula to these marginals. Marginal distributions of asset returns are known be
fat tailed; the Gaussian distribution is quite inappropriate for risk management purposes.
One possibility is to use a tractable fat tailed distribution like the student-t. More realisti-
cally, CCPs can and do use historical data (including data from stressed markets) to fit an
empirical distribution. Empirical copulas are harder to estimate, and it is easier to use an
analytical copula that fits the stylized facts of empirical finance. The t-copula is one of the
most suited for this purpose.

In our analysis, we use both ¢-marginals and t-copulas. The degrees of freedom of the
marginals and the copulas need not be the same, but for simplicity, we have used the same
degrees of freedom for both. In this case, we can simplify the simulations by sampling from
the multivariate t distribution. It is not too hard to modify the code to use a different
marginal distribution.

4.3 Impact of gross margins in the context of crowded trades

In this section, we discuss the impact of gross margins in the scenario of ‘crowded trade’
(Menkveld, 2017) where many clients of many clearing members have taken large long and
short positions in the same underlying. When there is an extreme price movement in this
crowded asset, many clients suffer large losses and may default. If the trade is sufficiently
crowded, several clearing members may also default as a consequence of defaults by many
of their members even if gross margins are used. This is a systemic risk event for the CCP
that might not be captured by the standard ‘Cover 2’ approach to CCP risk management
(Capponi et al., 2018). Our goal is to analyse the extent to which net margins can amplify
and aggravate this risk.
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For an intuitive understanding of how net margins become problematic in a crowded trade
scenario, it is instructive to begin with a toy model that assumes:

e Each clearing member has a large number of clients

e The clients of each clearing member are equally likely to be long or short the crowded
asset.

e The position size of individual clients follows a thin tailed distribution.

Under these conditions, the law of large numbers and the central limit theorem guarantee
that each clearing member’s net position is close to zero and the net margin payable to
the CCP is practically zero. Under our standard assumption that clearing member risk
management is relatively lax, it is very likely that a large number of clearing members will
fail and the CCP would have to rely almost entirely on the default fund and its own capital
to cope with an extreme price move in the crowded asset.

To model the situation more realistically, we drop all of the above simplifying assumptions
and replace them with the following:

e Each clearing member has a small number of clients (say 25) who take significant
speculative positions (for example, institutions, hedge funds, high net worth individ-
uals).

e The probability that clients of a clearing member take long or short positions in the
crowded asset varies across clearing members. Some members might have a lot of
bullish clients while some others might have a lot of bearish clients. Specifically, we
assume that the probability ‘p* that a client of a specific clearing member is bullish
follows the beta distribution. We set the two shape parameters of the beta distribu-
tion equal to each other to ensure that the distribution is symmetric. If the shape
parameter is greater than or equal to unity, the beta distribution is unimodal and
symmetric around mode of p = 0.5. A low value of the shape parameter spreads out
the distribution (the limiting value of unity means that p is uniformly distributed
between 0 and 1). Values of the shape parameter below unity lead to a symmetric
bimodal distribution with peaks at 0 and 1.

e The position size (disregarding the sign) of individual clients follows an extremely fat
tailed distribution. Specifically, we choose the Pareto distribution which is commonly
used to model the distribution of income and wealth. If the shape parameter (power
law exponent) of the Pareto distribution is set to 1.15, then 20% of the clients account
for 80% of the positions. This is the value that is commonly observed in wealth
distributions in many countries.

Since this model is not analytically tractable, we use Monte Carlo simulations to estimate
the effect of net margins. Our simulation results show that under our assumptions, the net
margins collected by the CCP is on average less than 20% of what it would collect under
gross margins. Clearly even a v/2 scale-up induced by an MPOR of 2 would go only a small
way towards offsetting this large difference.
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Because of the fat tails of the the Pareto distribution, there is a lot of variability in the
ratio of net margins to gross margins as shown in Table 9.

[Table 9 about here]

5 Conclusion

With the evolving regulations, the CCPs today have become integral to all developments
of modern financial market infrastructure governed by the CPSS-IOSCO PFMI standards
adopted by the Group of Twenty countries in 2012.

The PFMI document contains 24 principles that apply to all areas of clearing, ranging from
legal and governance issues to margins and credit risk management, so any study attempting
to review of risk management in CCPs needs to restrict its focus. In our study we have
looked at the the risk management practices of select large CCPs across jurisdictions as
they relate to their use of risk-based margin models and collection of margins, in particular
whether margins are collected by CCP from clearing members on gross versus net basis.

All the CCPs considered here except Eurex use some variant of SPAN to evaluate the risk
of a portfolio of positions and compute the applicable margins for ETDs. While SPAN is
known to be a coherent risk measure (Artzner et al., 1999), it is also a very old system
that has not been updated to reflect the massive improvements in computing power and
the increasing complexity of trading strategies. Eurex on the other hand uses a different
methodology (Prisma) which is arguably more modern. On the flip side, Prisma is a
proprietary methodology that is quite opaque compared to SPAN.

As reviewed here, although there are various alternatives offered to SPAN in the liter-
ature, either they remain untested for portfolios (Alexander et al., 2019) or are highly
data/econometrics intensive (Cotter and Dowd, 2006; Lam et al., 2010). Despite its known
and obvious limitations, given the popularity of SPAN for margining ETDs, a review of its
parameters is important. In that light, we have critically reviewed SPAN margining model
used in calculation of scan risk. A limitation is that this study does not look at the spread
adjustments that are important to reducing margins within SPAN. Like with other studies
in the literature, we have also not looked at portfolios straddling multiple asset classes.

Even so, the analyses to sensitivity of margins to SPAN parameters shows that given the
design of SPAN, certain positions (like short butterfly) may be designed to ”fall between the
cracks” and escape stringent margins. At the same time, we have shown that it is indeed
not difficult to improve SPAN parameters and fix its observed inadequacies.

We find that while large CCPs have broadly similar practices (partly ensured by compliance
with PFMI regulations) with respect to collecting margins, with US based CCPs standing
out for requiring margins to be collected on a gross basis (aggregate of margins on client
wise positions). On the other hand, all other CCPs considered here allow for net margins -
margin on the net position of all clients (though not exclusively). In the second part of the
study, we provide a quantitative comparison not found elsewhere in the literature to our
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knowledge for evaluating the impact of gross versus net margins with MPOR alternatively
set at 1 and 2.

The impact of a higher MPOR versus margining on a net basis might partially offset each
other, and it is not obvious that either the erstwhile European MPOR, of 2 or the US CCPs
are more lax than the other. An important methodological contribution of our paper is to
analyze the trade-offs in gross versus net margining in (a) the scenario where a large client
of a clearing member defaults idiosyncratically and (b) in the scenario where defaults arise
out of “crowded trades” (Menkveld, 2017). We have been able to find the conditions under
which the higher MPOR does or does not offset the risks induced by net margins.

18



Table 1
SPAN risk array used by ASX, CME (original), HKEx and LCH

Number PSR VSR Weight

1 0 1 1.00
2 0 -1 100
3 1/3 1 1.00
4 1/3 -1 1.00
5 /31 1.00
6 1/3 -1 1.00
7 2/3 1 1.00
8 2/3 -1 1.00
9 2/3 1 1.00
10 2/3 -1 1.00
11 1 1 1.00
12 1 -1 1.00
13 -1 1 1.00
14 1 -1 1.00
15 2 0 0.35
16 2 0 0.35
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Table 2
SPAN risk array used by CME (current)

Number PSR VSR Weight

1 0 1 1.0
2 0 -1 1.0
3 1/3 1 1.0
4 /3 -1 1.0
5 131 1.0
6 13 A 1.0
7 2/3 1 1.0
8 2/3 -1 1.0
9 2/3 1 1.0
10 2/3 -1 1.0
11 1 1 1.0
12 1 -1 1.0
13 -1 1 1.0
14 11 1.0
15 3 1 0.3
16 3 1 0.3
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Table 3
The twelve representative portfolios on HSI for comparing calculation of scan risk

No. Portfolio Strikes
1 Long futures -
2 Short futures -
3 Long call spread 28000, 28400
4  Short call spread 28000, 28400
5  Short butterfly 1 27800, 28200, 28600
6  Short butterfly 2 27800, 28200, 28600
7 Long futures and 50 call calendar spread 28000
8  Short futures and 100 put calendar spread 28000
9  Short call 28000
10  Short put 28400
11 Four short ITM calls and ITM puts 27400, 27600, 27800, 28000, 28400, 28600, 28800, 29000
12 Four short OTM calls and OTM puts 29000, 28800, 28600, 28400, 28000, 27800, 27600, 27400
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Table 4
Impact on scan risk and its location of different volatility factor

Portfolio VSF=4 VSF=5 VSF=6 VSF=7 Loc4 Locb Loc6 Loc7

1 699.91 874.89 1049.87 1224.85 -4.00 -5.00 -6 -7.00
2 699.91 874.89 1049.87 1224.85 4.00 5.00 6 7.00
3 163.74 172.21 175.95 177.37  -4.00 -5.00 -6 -7.00
4 233.93 278.66 313.73 341.54  4.00 5.00 6 7.00
5 15.56 17.76 22.27 26.91 4.00 5.00 6 7.00
6 70.90 71.01 68.99 65.01 1.33 1.67 2 2.33
7 6181.38  6020.07  6132.06 6185.12 -2.67 -1.67 -2 -2.33
8  9948.85 9887.86  9730.45 9475.66 1.33 1.67 2 2.33
9 956.14 1206.56 1470.43 1745.21 4.00 5.00 6 7.00
10 1013.87 1264.91 1520.62 1779.63 -4.00 -5.00 -6 -7.00
11 3093.96  3938.77  4877.88 5893.03 -4.00 -5.00 -6 -7.00
12 2534.34  3249.06  4061.00  4951.13 -4.00 -5.00 -6 -7.00
Note: VSF = Volatility scaling factor, Loc 3 = Location of scan risk with maximum

loss across risk arrays with VSF = 3 and so on
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Table 5

Impact on scan risk of different volatility shift applied

Portfolio VSh =0.06 VSh=0.08 VSh=0.10 VSh=0.12 Loc6 Loc8 Locl0 Locl12
1 874.89 874.89 874.89 874.89  -5.00 -5.00 -5.00 -5.00

2 874.89 874.89 874.89 874.89 5.00 5.00 5.00 5.00

3 172.21 175.82 177.53 17797  -5.00 -5.00 -5.00 -5.00

4 278.66 291.33 302.58 310.29 5.00 5.00 5.00 5.00

5 17.76 17.33 21.02 27.37 5.00 5.00 1.67 1.67

6 71.01 97.70 132.70 179.78 1.67 1.67 1.67 1.67

7 6020.07 7584.59 9149.60 10708.92  -1.67 -3.33 -3.33 -3.33

8 9887.86 12923.31 15965.55 19012.88 1.67 1.67 1.67 1.67

9 1206.56 1236.99 1269.23 1303.04 5.00 5.00 5.00 5.00

10 1264.91 1276.06 1289.71 1305.75  -5.00  -5.00 -5.00 -5.00

11 3938.77 4123.97 4325.42 454149  -5.00 -5.00 -5.00 -5.00

12 3249.06 3433.02 3633.13 3847.78  -5.00 -5.00 -5.00 -5.00
Note: VSh = Volatility shift, Loc 4 = Location of scan risk with maximum loss across risk arrays

with VSh set at 0.04 and so on
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Table 6
Impact on scan risk with alternative volatility scale factors and different volatility
shifts applied

Portfolio (5, 0.08) (5, 0.10) (6,0.08) (6,0.10) Loc 58 Loc 510 Loc 68 Loc 610

1 874.89 874.89  1049.87  1049.87 -5.00 -5.00 -6 -6
2 874.89 874.89  1049.87  1049.87 5.00 5.00 6 6
3 175.82 177.53 177.44 177.93 -5.00 -5.00 -6 -6
4 291.33 302.58 322.44 328.47 5.00 5.00 6 6
5 17.33 21.02 22.04 21.73 5.00 1.67 6 6
6 97.70 132.70 92.79 123.13 1.67 1.67 2 2
7  7584.59  9149.60  7641.42  9150.29 -3.33 -3.33 -2 -2
8 12923.31 15965.55 12771.70 15819.30 1.67 1.67 2 2
9 1236.99  1269.23 149590  1523.53 5.00 5.00 6 6
10 1276.06  1289.71  1528.53  1538.68 -5.00 -5.00 -6 -6
11 4123.97  4325.42  5025.30  5190.10 -5.00 -5.00 -6 -6
12 3433.02  3633.13  4206.82  4369.86 -5.00 -5.00 -6 -6
Note: (5, 0.08) = Volatility scaling factor set at 5 and volatility shift set at 0.08 and so

on, Loc 58 = Location of scan risk with maximum loss across risk arrays with volatility scaling
factor set at 5 and volatility shift set at 0.08 and so on
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Table 7
Uniform scanning grid with a fineness of +1/5

Num PSR VSR Weight

1 0.0 1 1.00

2 0.0 -1 1.00

3 0.2 1 1.00

4 0.2 -1 1.00

5 -0.2 1 1.00

6 -0.2 -1 1.00

7 0.4 1 1.00

8 0.4 -1 1.00

9 -04 1 1.00
10 -04 -1 1.00
11 0.6 1 1.00
12 0.6 -1 1.00
13 -0.6 1 1.00
14 -0.6 -1 1.00
15 0.8 1 1.00
16 0.8 -1 1.00
17 -0.8 1 1.00
18  -0.8 -1 1.00
19 1.0 1 1.00
20 1.0 -1 1.00
21 -1.0 1 1.00
22 -1.0 -1 1.00
23 1.2 1 1.00
24 1.2 -1 1.00
25 -1.2 1 1.00
26 -1.2 -1 1.00
27 1.4 1 0.80
28 1.4 -1 0.80
29 -14 1 0.80
30 -14 -1 0.80
31 1.6 1 0.60
32 1.6 -1 0.60
33 -1.6 1 0.60
34 -16 -1 0.60
35 1.8 1 0.40
36 1.8 -1 0.40
37 -1.8 1 0.40
38 -1.8 -1 0.40
39 2.0 0 0.35
40 -2.0 0 0.35
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Figure 1
Comparison of scan risk with default versus a uniform grid (fineness of +1/3)
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Portfolio 5: Short butterfly 1

Portfolio 6: Short butterfly 2
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Figure 2
Comparison of scan risk with default versus a uniform grid (fineness of +1/30)
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Portfolio 5: Short butterfly 1

Portfolio 6: Short butterfly 2
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Portfolio 9: Short call

Portfolio 10: Short put
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Figure 3
Schematic comparing the gross versus net margining system

Gross margin system Net margin system
| Client A | | Client B] | Client C] | Client A | [ Client B] | Client C]
| Margin | |Margin| |Margin| | Net Client Position |
] Sum of Client Margins \ ] Margin on Net Position \
] Margin passed to CCP \ ] Margin passed to CCP \

32



Table 8

Comparison of Gross and Net Margins

MPOR=1(r=-0.4)

MPOR=2(r=-0.4)

MPOR=2(r=-0.3)

CM Default Prob bp (Gross) 4.34
CM Default Prob bp (Net) 11.00
CCP Exp. Loss (Gross) 399.20
CCP Exp. Loss (Net) 821.46
Implicit VMG Hair Cut (Gross) 705.39
Implicit VMG Hair Cut (Net) 1436.51

4.29
6.86
398.27
571.98
726.13
1028.13

4.18
4.30
388.87
397.82
586.78
600.65
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Figure 4
Gaussian copula: Uncorrelated implies independent

Bivariate Gaussian. Corr=0 VaR=-1.65/-2.26

Asset 2
L]

3

| i |
6 -4 2 0

Asset 1

Figure 1: The Gaussian copula with zero correlation produces a scatter plot which is circular.
There are very few observations involving simultaneous extreme moves of both x and y. The

99% and 99.9% VaR for an equally weighted portfolio of the two assets are 1.65 and 2.26
times the standard deviation of the individual asset.
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Figure 5
t-copula: Uncorrelated assets show tail dependence

T-copula Gaussian marginals. Corr= 0 VaR=-2.18/-2.97

| 1 [ | - [ | |
6 -4 2 0 2 4 6
Asset 1

Figure 2: A t-copula with zero correlation produces a scatter diagram which looks like a
square rather than a circular. The tail dependence is seen in simultaneous extreme moves
in both x and y. The 99% and 99.9% VaR for an equally weighted portfolio of the two
assets are 2.18 and 2.97 times the standard deviation of the individual asset.
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Table 9
Ratio of net margin to gross margin for crowded trades

Min Q1 Median Mean Q3 Max
0.01 0.07 0.16 021 0.3 0.86
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