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Abstract

Anomaly detection is a critical application in many fields, such as fraud detection

in finance or the timely discovery of banking liquidity shortages. However, reach-

ing a high level of accuracy (i.e. low false alarms along with few misses) is a very

challenging task. The aim of this paper is to use deep neural networks belonging

to the family of Autoencoders, in order to evaluate their performance in the timely

discovery of anomalous payment patterns in the Italian component of the Interbank

Payment System TARGET2. The paper extends the work by Triepels et al. (2017)

using deeper autoencoders. We find that increasing the depth of the Autoencoder al-

lows an accurate evaluation of the network of participating institutions. Furthermore

Autoencoders can easily detect changes in the liquidity flows between participating

banks.
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1. Introduction

The liquidity crisis that followed the recent Great Financial Crisis has spurred an

increasing interest of policy makers in quantitative analysis of large value payment

flows among banks for financial stability purposes. To this purpose, data from pay-

ments systems are considered one of the key sources of macro prudential quantitative



analysis. These data are usually available almost in real-time and with high quality.

Our application focuses on TARGET2 payments data. TARGET2 is the second

generation of the Trans-European Automated Real-Time Gross Settlement (RTGS)

system. It is owned by the Eurosystem and operated by Banca d’Italia, Bundesbank

and Banque de France on behalf of the Eurosystem itself.

Both central banks and commercial banks can submit payment orders to the plat-

form, with no upper limit for their value. These are processed and settled in central

bank money, debiting and crediting the settlement accounts (Payments Module ac-

counts) that each participant has to hold at one of the Eurosystem central banks.

The TARGET2 system has gained a leading position in the Payment Systems land-

scape both in Europe and in the rest of the world, thanks to the over 5,000 credit

institutions using it to initiate transactions in euro, either on their own behalf or on

behalf of their own customers.

The platform settles real-time payments on an individual basis (gross settlement),

provided that sufficient liquidity is available in the participant banks’ accounts. Due

to its gross settlement feature, TARGET2 eliminates credit risk among participants.

In fact, regardless of some participants’ potential insolvency, transactions deemed as

final and irrevocable according to the system rules cannot be either voided or re-

versed. These are legally enforceable and binding on third parties. Unlike Deferred

Net Settlement (DNS) systems that only settles net balances, resulting from the daily

cumulative streams of incoming and outgoing payments, RTGS systems require their

participants to maintain sufficient liquidity on their accounts throughout the whole

business day, in order to execute their payments without undue delays. In this con-

text, being TARGET2 a network that interlinks all participants, if one participant

fails to fulfill its obligations, this can endanger the liquidity position of its recipients

and, in turn, it can cause the latter to be unable to meet its own payment obligations
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versus a third participant in time. This could cause a domino effect in the network.

One of the main goals of TARGET2 is actually that of minimizing systemic risk

in the financial system. This is defined as the risk of a financial system collapse,

induced by a cascading failure of one or more entities, via the interlinkages among

financial institutions. Failures arise from disruptions to the payment systems, credit

flows and destruction of asset values, as well as bank runs, whose spillover effects on

creditor banks expose the whole system to collapse. Both monitoring and proactive

timely detection of anomalies, such as illiquidity circumstances or even bank runs,

play a crucial role in the assessment of the build-up of systemic risk.

As an example of the materialization of such risk, consider the events from the

US System in 2008. On September 15th Lehman Brothers filed for Chapter 11

bankruptcy, due to an intraday liquidity shortage. This prevented it from providing

enough liquidity to its clearing banks to fund its payment obligations. In a scenario

stressed by the sub-prime mortgage crisis, the inability of the firm to settle its pay-

ments was perceived as a situation of potential insolvency. As a consequence, credit

lines were withdrawn by its counterparties, leading to the subsequent bank’s collapse,

see for example Ball et al. (2013). Following the bankruptcy of Lehman Brothers,

uncertainty about the financial soundness of major banks worldwide gave rise to a

dramatic shrinkage in the activity of several financial markets. In particular, this

affected the money market, that represents one of the available sources for payment

system participants to cope with their liquidity needs. Injection of unconventional

liquidity from central banks contributed to secure the Payment Systems from the

liquidity risk. Stress tests carried out by the Eurosystem, simulating extreme shocks

to the value of eligible collateral with a decrease of the intraday credit lines and

payment capacity of the TARGET2 participants, showed resilience of the system to

stress scenarios (see European Central Bank (2017)). Similarly, Banca d’Italia has
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run stress tests to assess the ability of the Italian banks to withstand liquidity shocks

in the TARGET2 settlement system. Such tests indicated that banks had enough

liquidity to cope with further freezings in the money market or with a blockage of

inflows from their main counterparty, see Banca d’Italia (2010, 2012).

At the time of writing, liquidity risk in TARGET2 appears to still be extremely low.

Nonetheless, the end of the Quantitative Easing program will likely be accompanied

by an increased sensitivity of participants to intraday liquidity imbalances. This will

deserve a careful monitoring to promptly detect idiosyncratic illiquidity conditions,

that could potentially materialize in systemic risk.

According to Gerlach (2009), three main approaches are currently used for mea-

suring systemic risk:

1. Indicators of financial soundness or financial stability;

2. Measures on the state of single institutions; e.g. the intraday liquidity moni-

toring tools developed by the Basel Committee on Banking Supervision (2013);

3. Gauging interlinkages and dependencies between financial institutions.

However, all these methods are affected by data availability issues, that undermine

their effective real-time application.

The aim of the present paper is to extend previous work by Triepels et al. (2017).

To do so, we implement and gauge the performances of a special type of Artificial

Neural Network, called Autoencoder, to model the behavior of payment flows, while

detecting anomalous deviations from the patterns learned from the past. The rest

of the paper is organized as follows: first, we review the literature on payments

data and the state of the art of their modelling in Sec. 2. In Sec. 3 we describe the

Italian TARGET2 data we used for our application, and describe all the steps to

our methodology, based on Autoencoders. We discuss our main findings in Sec. 4,
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and state some final remarks in Sec. 5. All figures and tables may be found in the

Appendix.

2. Related Work

A host of papers on payments data can be found in the literature in which the

authors study the properties and the behavior of banks in settlement systems. For

example, looking at the Federal Reserve’s Fedwire Funds Transfer service, McAn-

drews and Rajan (2000) show that the highest daily concentration of funds-transfer

value occurs in the late afternoon. This should be the result of an attempt of banks

and customers to coordinate the submission of payments, aimed to benefit incoming

transactions to settle with outgoing payments. For the Italian payments system,

Arciero and Impenna (2007) detect regular intraday and daily patterns of payments

settled in the Italian RTGS system related to operational deadlines such as end of

reserve maintenance, tax collection, and settlement of monetary policy operations,

while Massarenti et al. (2012) identify intraday patterns of interbank payments in

TARGET2. Additionally, Arciero et al. (2016) study how to identify euro-wide unse-

cured loans with maturities below one year, based on payment data from TARGET2.

Another thread of literature stresses the role of network interconnectedness in

causing financial contagion and systemic risk. In this vein, Allen and Gale (2000)

explain the origin of financial contagion from the lack of complete links among fi-

nancial institutions, while Huang and Xu (2000) focus on financial crises, based on

the interplay of corporate sector and the interbank liquidity market. León and Pérez

(2014) study the Colombian financial market infrastructures by proposing two cen-

trality graph measures. Finally, Berndsen et al. (2016) analyze the consequences

of interactions between the network of Financial Institutions and the Market In-

frastructure where exchanges take place. The insights achieved from those studies

5



were eventually employed to develop indicators of liquidity and systemic risk: see for

example Heijmans et al. (2014) on the problem of classification of banks’ liquidity

problems using payment information from Large Value Payment Systems.

Anomaly detection was also successfully applied on other types of financial data,

such as stock market data, tackling violation of securities laws. The latter ones in-

clude detection of unprofitable trades by brokers, and abnormal stock price changes

caused by stock price manipulation; see, respectively Ferdousi and Maeda (2006) and

Kim and Sohn (2012). Stock market data were also combined with options data and

news data to detect trades that were made based on information that was not avail-

able to the general public; see for example Donoho (2004). Multiple techniques were

applied to detect such insider transactions, including decision trees and ANN. An-

other related application involves credit card fraud detection. In this case, anomaly

detection is applied on credit card transactions to find out suspicious spending pat-

terns. Many techniques were proposed for this challenging task: Ghosh and Reilly

(1994), Maes et al. (2002) suggest Neural and Bayesian networks; Zaslavsky and

Strizhak (2006), Quah and Sriganesh (2008) employ Self-Organizing-Maps; Sánchez

et al. (2009) adopt Association Rules; and Srivastava et al. (2008) propose Hidden

Markov models.

3. Data and Methods

Our application is aimed to detect anomalies arising in the Italian TARGET2

payments system. Following the definition in Chandola et al. (2009), anomalies are

patterns in data that do not conform to a well defined notion of usual behavior. Since

our setting is unsupervised, prior labels indicating anomalousness of data points are

unavailable and we resort to a type of Artificial Neural Networks called Autoencoder.
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We considered the Italian TARGET2 payment activity over 583 working days

(spanning over a period of almost 27 months from January 2017 to April 2019).

Records were collected every 15 minutes during working days.1 Overall, T tot =

24, 192 observations were recorded.

Our empirical application was restricted to the payments among the N = 20 largest

Italian financial institutions, henceforth banks. Symbol Xij is used to denote the flow

of payments from bank i to bank j, with i, j = 1, . . . , N , yielding N2 possible flows.

At each time t, the matrix of payments xt is observed:

xt =


0 xt12 . . . xt1N

xt21 0 . . . xt2N
...

...
...

...

xtN1 xtN2 . . . 0

 .

Element xtij corresponds to the value of Xij at time t, for each pair (i, j) and

t = 1, . . . , T tot. In general, matrix xt is not symmetric, i.e. xtij 6= xtji, and sparse. As

a further remark, note how all elements on the diagonal were set to zero, to exclude

circular flows from our analysis. As a consequence, the effective number of variables

decreases from N2 to m = N · (N − 1), i.e. from 400 to 380.

Any Artificial Neural Network (ANN) is composed of an input, an output and

one or more internal hidden layers. In turn, each layer includes one or more nodes

(neurons) connected to the nodes of other layers by means of directed edges. For-

mally, let w = [w1, . . . , wm]T be a vector of m > 0 weights, and b ∈ R be a bias term.

Each node belonging to a given layer processes the values x = [x1, . . . , xm]T coming

1TARGET2 activity starts at 7:00 a.m. and stops at variable closing times, so that a working

day includes between 37 and 44 observations.
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from previous layers in two steps:

1. Linear aggregation of its inputs: yagg =
∑m

i=1wi · xi + b,

2. Activation function: yout = f(yagg).

Suppose the ANN is composed of H hidden layers, for a given sequence of activation

functions {f1, . . . , fH}, the output x̂, is determined as follows:

x(1) = f1 (W1x + b1)

x(2) = f2
(
W2x

(1) + b2

)
...

x̂(H) = fH
(
WHx

(H−1) + bH

)
Wh, h = 1, . . . , H, is a matrix of weights in Rnh×(nh−1), mapping elements from a

nh−1-dimensional layer toward the nh nodes of the successive layer. It is easy to

see the vector of weights w mentioned above is just a column of matrix Wh, when

nh−1 = m. Analogously bh ∈ Rnh is a vector of bias terms. We collectively refer to

the weights and biases as network coefficients. In our setup, we fix the activation

function across all layers, this means fh = f for any h.

The network architecture suitable for outlier detection with the data described above

is called Autoencoder (AE). It is a special type of ANN with a multi-layer symmetric

structure, used for unsupervised applications. An AE is trained to reconstruct input

data, corresponding to payments matrices in our setup. The reconstruction error

obtained is used as outlier score, successively passed to some rule to assess occurrence

of an anomaly. Formally, any matrix of payments xt substantially different from those

employed for the training and the validation phase2 will be marked as anomalous.

2We assume that the training set is devoid of anomalies.

8



AEs were first introduced by Hinton and Salakhutdinov (2006) as a non-linear

generalization of Principal Component Analysis (PCA). The AE architecture foresees

the same number of neurons in the input layer and the output layer. Furthermore,

the (innermost) hidden layer contains a sufficiently small number of neurons to trade-

off reconstruction accuracy with training time. Training of an AE yields a minimal

representation of input data, in a completely unsupervised framework. An example

of a shallow (i.e. with a single hidden layer) AE is sketched in Fig. 1.

We now outline the three main steps required to employ an Autoencoder:

i) SCALING: Input data to an AE is scaled to fit into the unit range [0, 1], see

for example Bishop (1995). We apply Min-Max scaling to map all observations

therein, based on three different scaling criteria:

1) System level (Sys) - Scaling accounts for the overall flows at each time

step: input value xti,j is mapped in the unit range according to the follow-

ing rule,

x̃ti,j =
xti,j −mini,j(x

t
i,j)

maxi,j(xti,j)−mini,j(xti,j)
∀i, j,∀t

2) Outflow level (Out) - Scaling is restricted to each bank’s overall outflows:

x̃ti,j =
xti,j −minj(x

t
i,j)

maxj(xti,j)−minj(xti,j)
∀j 6= i,∀t

3) Inflow level (In) - Scaling is restricted to each bank’s overall incoming

payments flows:

x̃ti,j =
xti,j −mini(x

t
i,j)

maxi(xti,j)−mini(xti,j)
∀i 6= j,∀t

All terms used for Min-Max scaling are stored for the final unscaling phase to

generate the estimated values in the original scale.
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ii) ENCODE AND DECODE: Scaled data are processed by a deep AE. These

networks are composed of an odd number of hidden layers that mediate the

flow of information toward the latent dimensions and outwards, in a symmetric

manner. We consider an AE with three hidden layers. Let m be the number of

neurons in the input and the output layers, k the number of neurons in the first

and the third hidden layer and finally l be the number of neurons in second

hidden layers (bottleneck layer). We assume m > k and l = k/2. The encoding

process maps the input in a progressively lower dimensional space data from

Rm to Rk, to Rl, with m > k > l. The decoding phase follows the reciprocal

path to restore the original dimension.

iii) UNSCALING: Scaling coefficients stored in the first step are employed to re-

cover the output generated by the AE in the original scale.

The outlined procedure is also synthesized by Fig. 2.

We have used three different approaches for the scaling task: Sys-, Out- and

In-scaling. In particular, Sys-scaling of the training data is expected to capture

deviations in the flows that affect the overall network of payments. However, this

approach might end up being too conservative since relatively large deviations in

the flows involving small banks would likely be unseen by the anomaly detection

task. On the other hand Out- (In-) scaling tackles this situation weighting each

bank’s outflows (inflows) irrespective of its relative size. Deviations in payments

from smaller banks are more likely to be marked as anomalies by the detection task

even if these anomalies did not threat the whole payment system.

Estimate of the network coefficients (training) and choice of the hyper-parameters

(tuning) of the AE are based on, respectively, an expanding window of observations

and a three-months period of data points. The first set of data is called the training
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set whereas the second is the validation set. The training set corresponds to a 1-

year window, ranging from April 2017 to March 2018, progressively expanded by one

month until February 2019 is reached. Tuning of the trained model is based on its

performance on the validation set which goes from January to March 2017. Once

the model is fully calibrated, it is employed on the test set 3, which extends over a

six weeks period, from the beginning of March to the first half of April 2019. The

partitioning of our dataset in three time windows is shown in Fig. 3.

The training process is performed over a maximum of 2,000 epochs4. Network

coefficients are initialized as follows: Xavier random initialization is used for the

weights, while the biases are set to zero 5. The training process consists in an

optimization aimed at determining the set of weights W and biases b which minimize

the mean reconstruction error (MRE), i.e. the average squared distance between the

original data and their estimated output from the AE:

MRET =
1

T

T∑
t=1

RE(xt) =
1

2T

T∑
t=1

‖xt − x̂t‖22 . (1)

xt and x̂t are, respectively, the vectors of all observations and their estimates pro-

duced by the AE at time t, where t = 1, . . . , T .

As already mentioned, the choice of the main hyper-parameters of the AE is based

3Quite often called hold-out set.
4An epoch is one complete presentation of the data set to be learned to a learning machine.

The value of 2,000 results from an empirical trade-off between training accuracy and small level of

overfitting.
5The right weights initialization is relevant to minimize the training time (see Xavier and Bengio

(2010)). Xavier initialization consists in assigning the weights from a Gaussian distribution with

zero mean and a constant variance equal the inverse of the layer width: 1
nh

. In this way the layer

variance remains σh = 1. This assures a smooth training preventing the error from exploding or

vanishing to zero.

11



on its out-of-sample performance in the validation set. These include the sort of

activation function and the cardinality of the innermost hidden layer (l). In our ex-

periments, we have chosen the identity activation function which has outperformed

both the hyperbolic tangent and the sigmoid activation functions. We base the

choice of the optimal number of neurons in the innermost hidden layers on a trade-

off between the reconstruction error performance and overfitting/underfitting, and

set l = 50, hence k = 100. The results for the three different kind of scaling are

shown in Fig. 4.

Once the model has been trained and tuned with each one of the three kind

of scaling approaches - Sys, Out and In -, anomaly detection is performed on the

unscaled predictions. We consider a deviance-based score for detecting anomalies.

Formally, let MREval and σREval be the mean reconstruction error and its standard

deviation in the validation set, our rule marks as anomalous any observation xt for

which:

RE(xt) ≥MREval + ασREval (2)

for each t in the test set, and α > 0.

We assume that systemic failures, as well as one-time disruptions, likely occur

as fuzzy sequences of perturbations, and there is not a unique rule to identify and

characterize them. Additionally, single perturbations manifest in time with varying

magnitudes, some of which negligible. For the anomaly detection task, no accuracy

measure may be consistently applied to evaluate the performance of our models

without formulating specific assumptions. Here we adopt a threshold-based rule,

Eq. (2), to label anomalous data points, irrespective of the extent to which these

exceed the threshold value α. To account for such extent, in sec. 4 we shall consider

different values of the threshold value, to gain the impression of how sensitive a model
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is to deviations in data. However, on the basis of our experience we suggest to use

α ≤ 3, for good practice.

Finally, to further test the ability of our AEs to detect anomalies in a supervised

framework, we introduce suitably crafted perturbations in our dataset.

For a fixed number of time steps d, we augment the outflows of bank i based on a

stochastic procedure. Let d be the number of time steps composing the perturbation

window, starting at t0. At any t′ ∈ [t0, t0 + d] anomalies occur according to some

scheme. We introduce anomalies according to the following:

x̆t
′

ij = xt
′

ij + δt
′

ija
t′

ij , (3)

δt
′
ij ∈ {0, 1} and at

′
ij ∈ R being, respectively, a binary term denoting occurrence of

the anomaly and its size.

We account for three main scenarios, namely with extreme, size increasing and mem-

oryless one-shot anomalies.

Due to the haziness in the classification of anomalies, in a complex environment like

TARGET2, in the first scenario these are introduced as deliberately extreme, to pin

down a wide acceptable measure of performance to enable statistically sound com-

parisons across methods and datasets. This is relevant, also in light of the growing

economic impact of classification technology (ranging from fraud/anomaly detection

to medical diagnosis). In the field of classification, performances are usually ex-

pressed as weighted combinations of False Positive and False Negative Rate, so as

to mirror the inherent conflict between two antagonistic objectives: minimizing the

number of False Positives (e.g., false anomalies) as well as that of False Negatives

(e.g., missed true anomalies). In our empirical applications we have chosen the very
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popular measure of precision and recall 6, which enjoy a wide acceptance among

scholars in different fields.

Roughly, we split the test set in two parts, with the fraction of anomalies ranging from

40% to 60%. Anomalous input data are derived from matrix xt, transformed from

sparse to dense: its zero values are replaced by random realizations of a Gaussian

variable with mean 107 7 and standard deviation 105, while the others are reduced

to one twentieth of their original amount.

In the second scenario, anomalies are introduced following a perturbation scheme

analogous to the one proposed by Triepels et al. (2017). We consider a fixed number

of time periods (d = 209), corresponding to around a full working week. δt
′
ij from

Eq. (3) is the realization of a Bernoulli variable, indexed by time-varying parameter

π(t′). This latter is defined as follows:

π(t′) = π + (π − π)

(
t′

d

)2

. (4)

It holds π ≤ π(t′) ≤ π, with π = 0.1, π = 0.8.

Size of the perturbations is determined in turn as a realization of an exponential

process whose rate λ(t′) follows the same dynamics as that in eq. (4):

λ(t′) = λ+ (λ− λ)

(
t′

d

)2

.

λ ≤ λ(t′) ≤ λ.

We fix λ = 104, λ = 107 and λ = 5 · 107, increasingly yielding, respectively, mild and

strong perturbations.

One-shot anomalies are only introduced on the last day of the same working week

6defining tp = true positive, fp = false positive and fn = false negative, precision = tp
tp+fp while

recall = tp
tp+fn

7This is approximately the median of the values in the perturbation window different from zero
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according to a Bernoulli process with constant probability π = 0.5, and at
′
ij = 9 · xt′ij,

for each t′ in the window. The two perturbation processes based on stochastic gen-

eration of anomalies are depicted in Fig. 5, while accuracy of the AE in the anomaly

detection task is discussed throughout sec. 4.1.

4. Results

The training of our AEs is based on the three different scaling techniques earlier

described. AE performances are shown by graphs showing the relation with a in-

creasing size of the training set by a color-coded scale. The number of daily detected

anomalies is length-coded. Each day presents a number of anomalies for each one of

the values taken into account. Higher and denser segments mean a larger number of

anomalies. Fig. 6 depicts the anomaly detection performance of the AE trained on

a progressively expanding window of sys-scaled data - from 12 to 23 months, with

monthly incremental steps. There we use the values α = 1, 2, 3. Analogous results

for Out- and In-Scaled data are reported by Fig. 7 and 8, respectively.

Overall, performance of the models proved robust to different sizes of the expand-

ing window used for training, see Sec. 3. Nonetheless, shorter windows, i.e. fewer

data points, of observations tend to slightly over-report anomalies when α ≤ 1. Ro-

bustness to changes in the number of records in the Training Set was supported by

preliminary analysis in the frequency domain, where high-frequency components of

data was assessed. The intuition is the following: any high-frequency periodic phe-

nomenon produces several representations of the period’s phases. In such a frame-

work, training of the AE is based on repetitions of a limited range of patterns, making

the marginal contribution of additional data points less relevant.

A further remark concerns sensitivity of the anomaly detection task to changes in
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parameter α, whose value ought to reflect the attitude toward deviations from the

expected patterns as anomalies: the larger α, the higher is confidence about stability

of TARGET2’s payment flows. Detection of anomalous behavior at the system level

is almost invariant to changes of α, when α > 1. See also fig. 9 for clarity.

While our application is aimed to timely detect dynamics that could materialize

systemic risk, finer grained information may also be exploited, to assess the state

of single banks. Let us restrict our analysis to the first two weeks of April 2019.

Performance of the daily anomaly detection performed by AEs trained on different

scalings (Out and In) is depicted in Fig. 10, with respect to a finer grid of values of

parameter α. It clearly emerges that extending the training period causes a sharp

drop in the number of anomalies, especially, for higher values of threshold parameter

α. This reflects the ability of the autoenconder to rightly address some spikes to

the usual behavior, even if they occur on TARGET2 due to, e.g., the contemporane-

ous occurrence of settlements of some less frequent monetary policy operations, and

other large interbank payments. The output produced by the AEs allows to delve

into the nature of deviations from usual behavior of payments data. As an example,

Fig. 11 represents contributions to the general RE by each bank’s cumulative out-

flows and inflows. Focusing on larger values of α, we found that most singularities

appear as related to payments settled by banks on behalf of their customers. Those

constitute a frequently executed kind of payments via TARGET2, for pairs of banks

which exchange customer payments quite rarely. These findings suggest a potential

usage of the autoencoder for wholesale payment fraud detection, as it proved to be

able to recognize ”unusual or uncharacteristic payment patterns (e.g., in terms of

timing, value, volume or location)” as required by the Committee on Payments and

Market Infrastructures (2018). Besides these customer payments, the autoencoder

succeeded in detecting singularities caused by a bank suffering a major outage which
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prevented it from submitting payments to TARGET2 for several hours in a day.

In real-time, granular information on single payments flows allows straightforward

assessment of those acting as drivers for the impending systemic failure, if any. Ret-

rospectively, it may help the qualitative as well as quantitative reconstruction of the

chain of events that led to liquidity crises.

4.1. Supervised Anomaly Detection

Table 1 summarizes the accuracy performance of our AE with extreme anomalies,

according to different values of threshold parameter α. The scenarios considered are

designed so as to guarantee a balance between anomalies and original values. In Ta-

ble 1 we show the AE performances in terms three standard figures for classification

tasks: precision, recall and F1-score. The latter is a summarizing measure of the

other two, obtained as their harmonic mean.

In the case of Sys-scaling we record values of precision and recall systematically

higher than 99.0%. When we consider the other two kind of scaling, Out and In, we

achieve somewhat lesser values for the classification performances. Nonetheless they

stay always above 92.0%.

The least value obtained for F1-score is 94.8%. However, the values from Table 1

provide us with evidence of a satisfactory classification mechanism. As a remark, this

exercise does not account for the ordering of observations: it is aimed to evaluate its

accuracy in properly discriminating between anomalies and expected labelled data

points, out of haziness. Nonetheless, the fraction of original observations may them-

selves contain slightly anomalous records. In fact, further analysis on the anomalous

component only provided increased values of the accuracy measures.

Fig. 12 summarizes the performance of the AE on the whole perturbed week,

according to different threshold values of α (see Eq. 2).
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As perturbations were restricted to the outflows (of a single bank), the AE trained

with In-Scaled data revealed very sensitive to deviations from the expected behavior.

Additionally, the daily number of unexpected values in the whole system detected by

the Autoencoder grew from 26.19% on Monday, to 78.57% (+230.00% compared to

original data) on Thursday, to 97.62% (+241.67%) on Friday, with fixed α = 2 and

strong perturbations. Analogously, mild perturbations yielded +50% and +191.67%

anomalous data points in the last two days of the week.

The case of abrupt perturbations concentrated all anomalies on a single day of the

week, without any forewarning in the data nor preparing dynamics. The perturbed

outflows were proportional to the original payments flows, and yielded reporting

of 14.29% (+20.08%) and 40.48% (+41.69%) of critical data points from the AEs

trained on Sys- and In-Scaled data, respectively, with α = 2.

It is now worth stressing two critical points. As a first, while the case of extreme

anomalies would serve the purpose to make the classification task fully supervised, al-

beit the inherent fuzziness in the original component of the sample, the perturbations

introduced in the other two scenarios did not consider the spillover effects originating

from deviations in the payments flows. Although this may be judged overly simplis-

tic, it provided us with insights on the way models trained on data scaled differently

behave in specific situations, that are rather likely to occur in payments data. Over-

all, our models proved efficient in timely detecting gradual introduction of anomalies

even though the perturbation scenarios described in Sec.4 would only affect 5% of

all features, i.e. 19 out of 380 components of a payment flow.

By considering the shown results, we can infer that the AEs represent a robust

method for a reliable assessment for anomalies detection on TARGET2.
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5. Concluding Remarks

With the help of a deep neural network architecture, in this work we have ex-

tended a method to detect both idiosyncratic and system-level anomalies in a RTGS

system. The procedure is based on the training of an Autoencoder to reconstruct a

set of known liquidity vectors. The outcome of our empirical application provides

the following results:

1. A deep Autoencoder with three hidden layers detects anomalies by comparing

the reconstruction error in the test set with the Mean Recostruction Error in

the training set;

2. Besides the extension of the package available for the R software, the Autoen-

coder has also been ported in Python achieving a reduction in the training time

of one order of magnitude;

3. The preliminary results seem to show good timely properties for system wide

stability conditions for the payment system.

Furthermore, we have shown that the reconstruction error made by a well-trained

Autoencoder after the reduction and reconstruction phase for the liquidity vectors

shows very clearly anomalous changes in the payment flows among banks.

We plan to further improve our work by extending the sample of analysis to years

which have witnessed more instabilities in terms of liquidity, and trying to evaluate

recurrent neural networks which also embed time dependencies.
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APPENDIX: Tables and Figures

. . .

. . .

. . .

X1

X2

X3

Xm

H1

Hl

X̂1

X̂2

X̂3

X̂m

Input

Layer

Hidden

Layer

Ouput

Layer

Figure 1: Basic representation of a shallow Autoencoder. Input and Output layers are constituted

by n > 0 neurons, or nodes. Input layer is fully connected with the l nodes from Hidden layer, with

l ≤ n; these are in turn fully connected with Output layer.

Figure 2: Autoencoder processing steps.
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Figure 3: Gross amount of overall payments recorded between the 20 largest Italian banks from

January 2017 until April 2019. Data were partitioned into Validation Set (light blue area), an

expanding Training Set (white and grey area) and a Test Set (yellow area). Gray vertical lines

identify months.

Figure 4: MRE performance on the Validation set of Autoencoders, according to varying number

of neurons in the innermost layer (l) and activation function. Left-to-right: Errors are reported for

the network trained with Sys-, Out- and In-scaled data.
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Figure 5: Left: Example of increasingly perturbed payments with respect to the outflows of bank i

in the Test set. Yellow and purple areas correspond to, respectively, mild and strong perturbations

of original data (black area), resulting from λ = 107 and λ = 5 · 107, respectively. Right: Example

of abruptly perturbed payments with respect to the outflows of bank i in the Test set. The purple

and black area identify perturbed and original data.
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Figure 9: Reconstruction Errors produced in the Test Set by the Autoencoder trained on (top-

down) Sys-, Out- and In-Scaled data, on the fully expanded Training window. Blue lines represent

the threshold value with α ∈ [0, 3] (see Eq. (2)). Values are represented on a log scale, to better

display changes in the RE.
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Extreme anomalies (%) α Sys Out In

Precision

50%
2 99.6% 94.5% 96.5%

3 99.8% 95.6% 97.4%

60%
2 99.7% 96.1% 97.7%

3 99.9% 96.9% 98.3%

40%
2 99.3% 92.4% 95.0%

3 99.8% 93.9% 96.4%

Recall

50%
2 99.7% 97.2% 98.2%

3 99.7% 97.0% 98.0%

60%
2 99.8% 97.3% 98.2%

3 99.8% 97.0% 98.1%

40%
2 99.7% 97.3% 98.2%

3 99.7% 97.0% 98.0%

F1-score

50%
2 99.7% 95.8% 97.3%

3 99.8% 96.3% 97.7%

60%
2 99.7% 96.7% 98.0%

3 99.8% 97.0% 98.2%

40%
2 99.5% 94.8% 96.6%

3 99.7% 95.5% 97.2%

Table 1: Classification performances of the Autoencoder for the three scaling techniques.
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Figure 10: Daily anomalies detected in the Test Set by the Autoencoder trained on Out- (top)

and In- (bottom) scaled data in the first two weeks of April 2019. Each colored vertical segment

depicts the number of daily detected anomalies. Length of the training period is color-coded.

Each day can have up to six vertical segments referring to different values of threshold parameter

{0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.
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Figure 12: Left to right: Additional anomalies (%) reported by the model trained on Sys-, Out-

and In-scaled data, with increasing anomalies over a week period. The increasing size of anomalies

was either mild (yellow) or strong (purple).
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