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Abstract

I propose applying the Mixed Data Sampling (MIDAS) framework to forecast Value at Risk

(VaR) and Expected shortfall (ES). The new methods exploit the serial dependence in short-

horizon returns to directly forecast the tail dynamics at the desired horizon. I perform a

comprehensive comparison of out-of-sample VaR and ES forecasts with established models

for a wide range of financial assets and backtests. The MIDAS-based models significantly

outperform traditional GARCH-based forecasts and alternative conditional quantile specifi-

cations, especially at multi-day forecast horizons. My analysis advocates models featuring

asymmetric conditional quantile and the use of Asymmetric Laplace density to jointly esti-

mate VaR and ES.
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1. Introduction

The recent 2007-2009 financial crisis has triggered the debate on the accuracy of risk

measurement models, especially those focusing on tail risk. Yet, two important grounds

remain largely unexplored. First, a voluminous literature study tail risk based on Value at

Risk (VaR) estimates, although this measure fails to meet the requirements of a coherent

risk metric as defined by Artzner et al. (1999).1 Among the alternatives, expected shortfall

(ES) has recently gained more attention.2 Despite its importance, there is little empirical

works focusing on ES. This is mainly due to the difficulty in estimation and backtesting

procedures (Gneiting, 2011). Second, the large extant literature focuses on 1-day ahead

risk forecasts, which is clearly insufficient to warn investors and financial institutions and

liquidate their positions. As emphasised by Engle (2011), p. 438, the financial crisis was

predicable one day ahead, and as such, the key failure in risk modelling in financial crisis lies

on their deteriorations in multi-day ahead risk forecasts (Brownlees et al., 2011).

This study addresses these gaps by extending the novel quantile regression based on

Mixed Data Sampling (MIDAS) of Ghysels et al. (2016) to forecast VaR and ES. The new

methods allow for direct forecasting VaR and ES at the desired horizon, while the use of

semiparametric specifications avoids making restrictive assumption about conditional return

distribution. To the best of my knowledge, this is the first study in the literature that

applies MIDAS to obtain ES forecasts. I perform a comprehensive analysis of the forecasting

accuracy of the proposed method. The main analysis involves: 43 international indices; three

forecast horizons (i.e., 1-day, 5-day and 10-day, respectively); twelve forecasting models; six

statistical backtests on both VaR and ES; and an out-of-sample forecast comparison with

two loss functions.

My proposal draws on two streams of the literature. First, it is well-established that

financial return distribution is not normal and this fact is more pronounced at the multi-day

1Previous papers mainly examine the predictive power of risk models in producing VaR forecasts, either
explicitly (see, e.g, Berkowitz et al., 2011; Boucher et al., 2014) or implicitly via volatility forecasting (see,
e.g, Brownlees et al., 2011; Bams et al., 2017)

2The “Minimum capital requirements for market risk” of Basel Committee on Banking Supervision (2016)
has moved toward using ES, as a complement of VaR, to calculate the regulatory capital requirement. This
regulatory agreement is expected to be fully implemented on January 1, 2022.
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horizon.3 Consequently, a good forecasting model at short horizon, such as 1-day ahead,

does not necessary yield accurate forecasts at multi-day horizon. Moreover, each quantile

in a nonnormal distribution may evolve in different dynamics and depends on different sets

of information.4 These observations suggest that a tail risk model may benefit from a di-

rect estimation of tail area rather than the traditional approach using conditional return

distribution models, such as the GARCH family.

Second, several studies document that the dynamic of return volatility is characterised

by multiple components capturing information at different time horizons.5 Given the strong

correlation between volatility and return quantiles, it is natural to calibrate a model that

could capture different components of information in modelling the tail dynamic. Moreover,

Engle (2011) and Neuberger (2012) highlight that long-horizon return distribution depends

crucially on the dynamics in short-horizon return process. Therefore, one needs to take into

account the serial dependence in short-horizon return when forecasting VaR and ES at the

multi-horizon-ahead.

Altogether, I propose to extend the novel MIDAS quantile regression of Ghysels et al.

(2016) to directly forecast VaR and ES at the desired horizon. The MIDAS framework

introduced by Ghysels et al. (2004) provides an efficient method to link variables sampled at

different frequencies. The use of flexible and parsimonious lag polynomials allows MIDAS

to directly forecast lower frequency variables by exploiting the data-rich environment at

higher frequencies. Thus, MIDAS also provides a suitable framework to capture different

components in the tail dynamics by data-driven weighting scheme with flexible shapes. More

importantly, this approach offers a direct projection from short-horizon return to multi-

horizon return distribution. Andreou et al. (2011) locate the MIDAS approach in the middle

of the ‘direct ’ and ‘iterate’ methods in the forecasting literature.6

3Engle (2011) and Neuberger (2012) find that the asymmetry in return distribution increases with horizon
up to one-year and converges very slowly to normality. Recently, Fama and French (2018) apply bootstrap-
ping simulations and document significant return skewness at even 20- and 30-years returns.

4Cenesizoglu and Timmermann (2008) and Lima and Meng (2017) document asymmetric effects of eco-
nomic variables on different parts of the return distribution and time-variation in their explanatory powers.

5Some notable examples are Chernov et al. (2003), Corsi (2009) and Engle et al. (2013).
6A number of recent studies document the advantage of applying MIDAS in financial forecasts, including

Andreou et al. (2013); Foroni et al. (2018) for macroeconomic predictions; Pettenuzzo et al. (2016) for return
density; Ghysels et al. (2006) for volatility.
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To forecast ES, however, one needs to address its central problem of “non-elicitability”,

which is the lack of a scoring function to facilitate the estimation (Gneiting, 2011). To

overcome this issue, I follow two semiparametric approaches proposed in the literature, which

directly model VaR and ES and allow their dynamics to vary for each quantile levels. I start

from the premise that it is important to account for the serial dependence of higher return

process (i.e. daily, in this study) in modelling the conditional density at the desired horizon

(Neuberger, 2012). For this purpose, I develop the proposed models on the MIDAS-based

quantile regression of Ghysels et al. (2016). In particular, the conditional quantile is based

on a mixture of lagged higher frequency returns, which is driven by the data environment

and flexibly differs for each quantile level and forecast horizon. Moreover, I also develop an

asymmetric specification, which provides better out-of-sample forecast performance than its

symmetric counterparts of Ghysels et al. (2016) in most cases.

In the first approach, I adopt the semiparametric model of Taylor (2019) based on the

Asymmetric Laplace (AL) density. The author explores the fact that although ES is not

individually elicitable, it is jointly elicitable with VaR under a set of suitable scoring functions

(Fissler and Ziegel, 2016). Since the AL log-likelihood is a member of this set, VaR and ES

can be jointly estimated via maximum likelihood of an AL density. In the second approach,

I follow Manganelli and Engle (2004) to combine quantile regression and extreme value

theory (EVT). The conditional VaR and ES are estimated by fitting a Generalised Pareto

Distribution (GPD) to the extreme observations that exceeded a threshold level.

In the empirical analysis, I employ two alternative semiparametric approaches in the

literature as the benchmark methods. First, I consider the filtered historical simulation ap-

proach introduced by Barone-Adesi et al. (1999) and Giannopoulos and Tunaru (2005). I use

two GARCH models to prefilter the data. VaR and ES forecasts are then obtained from the

empirical distribution approximated from simulated paths of returns at the desired horizon

using bootstrapping methods. Second, I replace MIDAS-based quantile specifications by

the conditional autoregressive VaR (CAViaR) specifications of Engle and Manganelli (2004).

The CAViaR-based dynamics have attractive autoregressive structure, yet one needs to form

a single-horizon return series that matches the forecast horizon in the model estimation (see,

for example, Meng and Taylor, 2018; Taylor, 2019, for applications in VaR and ES forecasts).
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I use a battery of statistical tests to compare the out-of-sample VaR and ES forecasts

between competing models. In the first stage, I analyse their absolute performance based

on the desired properties of VaR and ES as risk metrics, such as correct tail coverage and

interdependent exceedances. The backtests include the unconditional coverage test of Kupiec

(1995), the dynamic quantile test of Engle and Manganelli (2004), the unconditional ES test

on violation residuals of McNeil and Frey (2000), the unconditional and conditional ES test

using probability-integral-transform (PIT) of Du and Escanciano (2017) and the multinomial

VaR test of Kratz et al. (2018). In the second stage, I investigate the relative performance

of competing models in term of minimizing two loss functions. To this end, I form a set of

superior models using the Model Confidence Set (MCS) technique of Hansen et al. (2011).

In summary, I obtain strong evidence in favor of the new models across quantile levels

and forecasting horizons. Although my focus is to improve multi-day horizon VaR and ES,

the MIDAS-based models provide competitive performance to the benchmarks at the 1-day

horizon as well. The benefit of MIDAS framework is more pronounced at multi-day forecast

horizons. The MIDAS-based models lead to the lowest number of test rejections for both

VaR and ES forecasts at the 5- and 10-day horizons. The asymmetric MIDAS-based models

generate the lowest forecast errors and are often included in the set of superior models. My

empirical results reveal that the naive aggregation to single-horizon return series leads to

substantial loss in forecasting information as the CAViaR-based models are inferior to all

other models in multi-day forecasting horizons. Finally, I find evidence supporting the joint

model of Taylor (2019) that use the AL likelihood in forecasting VaR and ES. The main

results are robust when I repeat the analysis for individual stocks, alternative asset classes,

different market regimes and separately for developed versus emerging stock markets.

The remainder of the paper is structured as follows. Section 2 introduces my proposed

methods. Section 3 reviews the benchmark methods, while Section 4 presents the backtest-

ing procedures for VaR and ES forecasts. Section 5 presents the empirical results on the

out-of-sample forecast comparison. Section 6 presents several robustness checks on model

performance spanning different market regimes, alternative assets and alternative length of

estimation windows. Section 7 concludes the study.
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2. Proposed new methods for VaR and ES forecasts

2.1. The MIDAS-based Conditional Quantile

Let {rt} = ln(Pt/Pt−1) be the daily continuously compounded return series where Pt is

the closing price of trading day t. The h-day horizon return is defined as rt,h =
∑h

i=1 rt+i.

The h-day VaR of an asset or portfolio returns at the (1−α)% confidence level is simply the

conditional quantile at α, Qα,t−1(rt,h).
7 The main ingredient of the proposed models is the

MIDAS-based conditional quantile specification introduced by Ghysels et al. (2016). The

conditional quantile of returns at any horizon is specified as a linear function of conditioning

variables, which can be sampled at different frequencies:

Qα,t−1(rt,h) = β0
α,h + β1

α,h

D∑
d=1

ϕd(κα,h)|rt−d,1| (1)

where the absolute daily return |rt−d,1| is the conditioning variable with a lag length of D

days. ϕd(.) is the polynomial function that linearly filters the conditioning variable and

projects to the conditional quantile. κα,h is a low-dimensional parameter vector that parsi-

moniously defines the shape of the filtering function. The vector of estimated parameters

θα,h = (β0
α,h, β

1
α,h, κα,h) is quantile-specific at considered horizon.

A natural extension of (1) is to capture the well-documented asymmetric effects of pos-

itive and negative returns (see, e.g. Engle and Manganelli, 2004; Taylor, 2019). The asym-

metric conditional quantile can be specified as follow:

(2)Qα,t−1(rt,h) = β0
α,h + β1−

α,h

D∑
d=1

ϕd(κα,h)I(rt−d,1<0)|rt−d,1|+β1+
α,h

D∑
d=1

ϕd(κα,h)I(rt−d≥0)|rt−d,1|

where I(.) is the indicator function. To retain the parsimonious advantage of the MIDAS

framework, I apply one polynomial ϕd(κα,h) but allowing for different slope coefficients for

negative and positive lagged returns. I follow Ghysels et al. (2016) to specify ϕd(κα,h)

by the “Beta” polynomial with two parameters, ϕd(κ1, κ2), given that it provides highly

flexible shapes (see, Ghysels et al., 2007, for technical discussions and alternative polynomial

7Throughout the paper, I use the terms ”VaR” and ”conditional quantile” at the α quantile level inter-
changeably to imply the conditional VaR at the (1 − α) confidence level. To simplify the notation, I drop
the horizon subscript h whenever it does not cause confusions, keeping in mind that the series refers to the
h-day horizon from day t to t+ h.
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functions). I restrict κ1 = 1 and κ2 > 1 in order to have decaying weights on the conditioning

variable.8 The lag length is set at D = 100 days for all forecasting horizons. This choice is

based on the observation of Ghysels et al. (2006) that using lags longer than 50 days has little

effect on volatility forecasts up to 20-days horizon. The conditional quantile is estimated by

minimizing the following tick loss function:

θ̂α,h = argmin
θα,h

T−1

T∑
t=1

[rt,h −Qα,t−1(rt,h)]
[
α− I(rt,h≤Qα,t−1(rt,h)

]
(3)

The conditional ES is the expected loss given a VaR violation occurred and can be expressed

as:

ESα,t−1(rt,h) = E [rt,h|rt,h ≤ Qα,t−1(rt,h)] (4)

In the next subsections, I present two alternative approaches to estimate ES based on the

above MIDAS-based conditional VaR specifications.

2.2. Forecast VaR and ES with Asymmetric Laplace Distribution

In the first approach, I jointly estimate VaR and ES using Asymmetric Laplace (AL)

density as proposed by Taylor (2019). This model is motivated by the work of Koenker and

Machado (1999), who link the minimisation of the ‘tick loss ’ function in (3) to the maximum

likelihood of an AL density specified as follows:

f(rt) =
α(1− α)

σ
exp

(
−(rt −Qα(rt))(α− I(rt ≤ Qα(rt))

σ

)
(5)

where, for this density, Qα(rt) is the time-varying location, while σ > 0 and 0 < α < 1 are

the scale and skew parameters, respectively. Note that the return process is not assumed to

follow AL distribution since the skew parameter α is chosen corresponding to the quantile

level of interest. Taylor (2019) argues that if the scale parameter σ varies over time, its

maximum likelihood estimation can be interpreted as the time-varying expectation of the

8Similar Ghysels et al. (2016), I find that optimising both two parameters can improve the goodness-of-fit
in quantile estimate marginally. However, the optimisation comes at significant computational cost and a
lower convergence rate.
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‘tick loss ’ function:

σt = Et−1 [(rt −Qα(rt)) (α− I (rt −Qα(rt)))] (6)

Since Bassett et al. (2004) link the conditional ES to quantile regression by:

ESα,t−1(rt) = Et−1(rt)−
1

α
Et−1 [(rt −Qα(rt)) (α− I (rt −Qα(rt)))]

then (6) can be rewritten in term of conditional ES and conditional mean µt = Et−1(rt) as:

σt = α(µt − ESα,t−1(rt))

Thus, for given specifications on the dynamics of the conditional mean, conditional VaR and

ES, the AL density in (5) can be rewritten in conditional terms as:

f(rt) =
1− α

µt − ESα,t−1(rt)
exp

(
−(rt −Qα,t−1(rt))(α− I(rt ≤ Qα,t−1(rt))

α(µt − ESα,t−1(rt))

)
(7)

Without the loss of generality, I specify the conditional mean return as an AR(1) formulation

where µt = a0 + a1rt−1 to account for possible autocorrelation in the return process. I follow

Taylor (2019) to specify conditional ES as an exponential function of the conditional quantile:

ESα,t−1(rt) = [1 + exp(γ)]Qα,t−1(rt) (8)

where γ controls the joint dynamics of VaR and ES. The use of exponentiation function is

to prevent possible crossovers between conditional VaR and ES. The Qα,t−1(rt) can follow

either the MIDAS-based specifications in (1) and (2). Finally, I follow the optimisation

procedure of Taylor (2019) to jointly estimate VaR and ES. To assist the optimisation,

I separately estimate the coefficients in the conditional mean using maximum likelihood

and the conditional quantile using the MIDAS quantile regression.9 Next, these optimised

values are combined with 104 randomly sampled candidates for the γ coefficient in the ES

formulation to form the vectors of starting parameters. The optimisation is then performed

on the negative of the sample log-likelihood of (7). I term the models which define Qα,t−1(rt)

9The estimation is based on an R code created by the author following the Matlab toolbox provided by
Eric Ghysels
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in (1) and (2) as ‘Midas-AL’, and ‘MidasAs-AL’, respectively.

2.3. Forecast of VaR and ES with Extreme Value Theory

In the second approach, I adopt the two-step estimation procedure suggested by Man-

ganelli and Engle (2004). First, the MIDAS quantile regression of Ghysels et al. (2016)

is estimated at a threshold level which is not as extreme as the quantile level of interest.

Similar to Manganelli and Engle (2004), I choose the threshold level at αu = 7.5%. The

standardised quantile residuals, Zαu , are then obtained as follows:

Zαu =
rt

Qαu,t−1(rt)
− 1 (9)

where Qαu,t−1(rt) is the conditional quantile at threshold level αu. Second, I fit the Gener-

alised Pareto Distribution (GPD) to the standardised quantile residuals of threshold viola-

tions, i.e Zexceed
αu = Zαu|Zαu > 0 ∼ GPD(ξ̂, ς̂), where ξ̂ < 1 is the shape parameter and ς̂

is the scale parameter. Conditional VaR and ES at any quantile level α < αu then can be

computed using the results of McNeil and Frey (2000):

Qα,t−1(Zαu) =
ς̂

ξ̂

[(
αT

Tu

)−ξ̂
− 1

]

ESα,t−1(Zαu) = Qα,t−1(Zαu)

(
1

1− ξ̂
+

ς̂

(1− ξ̂)Qα,t−1(Zαu)

)
Qα,t−1(rt) = Qαu,t−1 [1 +Qα,t−1(Zαu)]

ESα,t−1(rt) = Qαu,t−1 [1 + ESα,t−1(Zαu)]

where Tu is the number of exceedances beyond the conditional threshold. In this approach,

I denote the model that uses the (1) specification in quantile regression as ‘Midas-Evt ’,

whereas I use the term ‘MidasAs-Evt ’ when specification in (2) is used.

3. Benchmark Models

In this section, I present a set of benchmark models to examine the predictive power of

new methods on out-of-sample VaR and ES forecasts. The details of forecasting models are

presented in Table A.1 in Appendix.
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3.1. Filtered Historical Simulation

The first benchmark method is the Filtered Historical Simulation (Fhs) introduced by

Barone-Adesi et al. (1999) for VaR and extended to ES by Giannopoulos and Tunaru (2005).

Kuester et al. (2006) find that this approach outperforms the simple historical simulation as

well as the analytical approximation in VaR forecasts.

I consider two GARCH models to prefilter the data, namely the GARCH(1,1) model of

Bollerslev (1987) and its asymmetric version, i.e. GJR-GARCH(1,1) model of Glosten et al.

(1993). Brownlees et al. (2011) document better volatility forecasting performance for the

latter relative to alternative GARCH-type models. To be consistent with the MIDAS-based

models, I model conditional mean as an AR(1) process:

rt = a0 + a1rt−1 + σtzt (10)

while the conditional variance process is defined as:

GARCH: σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1 (11)

GJR-GARCH: σ2
t = β0 + β1ε

2
t−1 + β2I(εt−1<0)ε

2
t−1 + β3σ

2
t−1 (12)

where εt = σtzt is the residuals from the mean equation and zt is the series of standardised

resdiuals, which follows the standardised Skewed Generalised Error (SGE) distribution of

Theodossiou (2015), i.e. zt ∼ SGE(0, 1, λ, η). This distribution allows for tail-fatness and

asymmetry in the return process, where the shape parameters −1 < λ < 1 and η > 0 control

asymmetry and tail thickness, respectively. The distributional density is symmetric when

λ = 0 and skews to the left (right) when λ < 0 (λ > 0). When λ = 0 and η = 2, it gives the

standardised normal distribution (see, e.g., Feunou et al., 2016; Anatolyev and Petukhov,

2016, for application of SGE distribution to financial data).

To estimate conditional VaR and ES at h-day horizon, I perform the following algo-

rithm. First, I randomly sample {z∗t+1, z
∗
t+2, .., z

∗
t+h} with replacement on day t from the

set of standardised residuals. Then, the sampled residuals are plugged into the conditional

mean and variance equations (i.e., (10) - (12)) to generate a simulated path of returns

{r∗t+1, r
∗
t+2, ..., r

∗
t+h}. The bootstrapped h-day return is then constructed as r∗t,h =

∑h
i=1 r

∗
t+i.

These above steps are repeated B = 10, 000 times to form an empirical return distribution
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at the h-day horizon, {rbt,h} = {r1
t,h, r

2
t,h, ..., r

B
t,h}. Finally, the conditional VaR is obtained as

the αth percentile of the simulated return distribution:

QB
α (rt,h) = {rbt,h}Bα (13)

and the corresponding conditional ES is:

ESBα (rt,h) =
1

Bα

B∑
b=1

rbt,hI(rbt,h<Q
B
α (rt,h)) (14)

where I(rbt,h<Q
B
α (rt,h)) is an indicator function. I term the VaR and ES forecasts from this

method as ”GARCH-Evt” when the conditional variance in (11) is used and ”GJR-Fhs”

when (12) is used.

3.2. EVT-based Filter Historical Simulation

An alternative simulation approach is to combine Fhs with EVT as proposed by McNeil

and Frey (2000). Novales and Garcia-Jorcano (2018) find that the EVT-based models provide

better VaR and ES forecasts than those of non EVT-based models. To this end, I fit a GPD

to the in-sample standardised residuals that exceeded the threshold, which correspond to

the 7.5% percentile of the standardised residuals. Next, I follow McNeil and Frey (2000)

to simulate the conditional return distribution at the h-day horizon using the following

algorithm. Similar to the Fhs, I randomly sample {z∗t+1, z
∗
t+2, .., z

∗
t+h} with replacement from

the set of standardised residuals. If the bootstrapped z∗ is lower than the threshold level, I

replace it with a simulated value from a GPD (ξ̂,η̂), where ξ̂ and η̂ are the estimated GPD

parameters from in-sample standardised residuals. Otherwise, the sampled standardised

residuals is used. Then, I obtain the empirical return distribution at the h-day horizon using

B = 10, 000 trails similar to the Fhs algorithm, {rbt,h} = {r1
t,h, r

2
t,h, ..., r

B
t,h}. Finally, the

conditional VaR and ES are also obtained by (13) and (14) as above. I term the VaR and

ES forecasts from this approach “GARCH-Evt” and “GJR-Evt”, depending on whether the

filtering model is GARCH(1,1) and GJR-GARCH(1,1), respectively.

3.3. CAViaR-based Models

In the next benchmark method, I replace the MIDAS-based specifications with two ana-

logues drawing from the CAViaR model of Engle and Manganelli (2004):
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Symmetric Absolute Value:

Qα,t−1(rt) = β0 + β1Qα,t−2(rt−1) + β2|rt−1| (15)

Asymmetric Slope:

Qα,t−1(rt) = β0 + β1Qα,t−2(rt−1) + β−2 I(rt−1<0)|rt−1|+β+
2 I(rt−1≥0)|rt−1| (16)

The conditional VaR and ES are estimated using either AL density or EVT as described

earlier. A contrasting difference between this benchmark method and MIDAS-based models

is the treatment of higher frequency observations. The CAViaR model works exclusively on

single-horizon setting. This means that one needs to aggregate higher frequency returns to

match the target forecasting horizon to perform model estimation. I term the forecasting

models ‘Sav-AL’ and ‘Sav-Evt ’ when symmetric absolute value specification is utilised. Alter-

natively, I refer the models as ‘As-AL’ and ‘As-Evt ’ when the asymmetric slope specification

is employed.

4. Evaluation Methods for VaR and ES Forecasts

I employ two alternative ways to evaluate the accuracy of out-of-sample VaR and ES

forecasts. First, I assess the absolute performance of VaR and ES forecasts corresponding

to their usages as risk measures. Second, I evaluate the relative performance of competing

models using two loss functions.

4.1. Absolute Performance Evaluation

4.1.1. VaR backtests

I employ two popular tests to investigate the accuracy of VaR forecasts, including the

unconditional coverage (UC ) test of Kupiec (1995) and the dynamic quantile (DQ) test of

Engle and Manganelli (2004). Under the null hypothesis of the UC test, the number of

VaR violations is not statistically different from the chosen quantile level. The test can be

performed using the log-likelihood ratio (LR) statistic:

LR = 2[Tuln(Tu/(αT )) + (T − Tu)ln((T − Tu)/(T − αT ))]

12



where T is the number of observations, α is the probability level and Tu is the number of VaR

exceedances. The LR test statistic follows a χ2(1) distribution. Apart from unconditional

coverage, DQ further examines the dependence between VaR violations. The test statistic

involves a transformation of VaR series to a hit sequence, Hitt = I(rt<Qα,t−1(rt)) − α. Under

the null hypothesis of correct VaR forecasts, Hitt should have a zero unconditional and

conditional expectation given the information set available at time t − 1. The test can be

performed using a linear regression Hitt = Xβ+εt, where X is a set of potential explanatory

variables, including a constant, the current level of VaR and five lags of Hitt. The test

statistic is specified as:

DQ =
b̂′X ′Xb̂′

α(1− α)

where b̂ are the estimated coefficients of the linear regression and the DQ test statistic follows

χ2(7) distribution, where 7 is the column dimension of X.

4.1.2. ES backtests

I consider three backtesting procedures for ES forecasts. First, I employ the discrep-

ancy test of McNeil and Frey (2000). After standardizing by corresponding VaR estimates,

the standardised discrepancies between VaR violations and ES forecasts should have uncon-

ditional mean of zero under correct risk model. This null hypothesis can be tested using

bootstrap method with 10,000 trials as documented in McNeil and Frey (2000).

Second, I adopt the unconditional and conditional ES tests of Du and Escanciano (2017)

due to their analogy with the VaR backtests. Instead of explicitly employing ES estimates,

they implicitly examine the accuracy of the risk model in tail coverage. These tests are

based on the observation that VaR violations should form a class of martingale difference

sequence (MDS), indexed by the considered quantile level. Du and Escanciano (2017) argue

that the cumulative violations also form MDS and provide meaningful information about the

conditional tail when a violation occurs to backtest ES. The cumulative violation process is

defined as the integral of VaR violations:

Ht(α) =
1

α

∫ α

0

ht(u)du
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where ht(u) = I(rt<Qu,t−1(rt)) is the hit indicator at quantile level, u, at time t. If the risk

model is correctly specified, ht(u) has mean u. Similar to Du and Escanciano (2017), I

define ut = F (rt|θ̂α,Ωt−1) for computational purposes, where F (.|Ωt−1) is the conditional

cumulative return distribution given the estimated parameters of the risk model, θ̂α. Then,

ht(u) = I(rt<Qu,t−1(rt)) = I(ut<u) and the cumulative violations process can be written as:

Ht(α, θ̂α) =
1

α

∫ α

0

I(ut<u)du =
1

α
(α− ût)I(ût<α)

The unconditional ES test can be conducted by testing the null hypothesisH0 : E
[
Ht(α, θ̂α)

]
=

α/2 using a standard t-test:

UES =

√
T
(
H(α)− α/2

)
var(Ht(α))

∼ N(0, 1) (17)

where T is the number of forecasts and var(Ht(α)) =
√
α(1/3− α/4), and H(α) is the

sample mean of {Ĥ(α)}Tt=1. The conditional ES test can be obtained by checking the null

hypothesis being H0 : E
[
Ht(α, θ̂α)− α/2|Ωt−1

]
= 0. For this purpose, the lag-j autovari-

ance, γT,j, and autocorrelation, ρT,j, of {Ht(α)}Tt=1 for j ≥ 0 are defined as:

γT,j =
1

T − j

T∑
t=j+1

[Ht(α)− α/2] [Ht−j(α)− α/2] and ρT,j =
γT,j
γT,0

To be consistent with the DQ test, I chose a lag order m = 5. The test can then be conducted

using a simple Box-Pierce test statistic.

CES(m) = N
T∑
j=1

ρ̂2
T,j ∼ χ2

m (18)

Finally, I employ the multinomial VaR (MultiVaR) test of Kratz et al. (2018) to evaluate the

accuracy in tail coverage by simultaneously testing VaR estimates at multiple quantile levels.

From a practical viewpoint, this test has the advantage of not having to store predictive

distribution F (.|Ωt−1) from the risk model at each forecast. For a given starting quantile

level of interest, α, I consider a series of VaR forecasts at levels α1, .., αN given by:

αj = α +
j − 1

N
(1− α), j = 1, .., N (19)
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I consider the starting quantile level α = 0.025 , which is equivalent to backtesting ES

forecasts at the 2.5% quantile level. This choice is motivated by the requirement of Basel

Committee on Banking Supervision (2016) for ES forecasts.10 The sequence Xt =
∑N

j=1 It,j

with It,j = I(rt<Qαj,t−1) counts the number of VaR estimates being violated at each time t.

Similar to the individual VaR estimate, the sequence (Xt) should satisfy the unconditional

coverage, i.e. P (Xt ≤ j) = αj+1, j = 0, ..., N for all t and the conditional coverage, i.e.

Xt is independent of Xs for all s 6= t. Kratz et al. (2018) show that the two above condi-

tions can be tested using multinomial distribution MN(T, (p0, ..., PN)) where T is number of

trials. At each trial, I observe N + 1 outcomes (0, 1, ..., N) depending on how many VaR

levels are breached with corresponding probabilities p0, ..., pN . The observed cell counts are

defined as Oj =
∑T

t=1 IXt=j. Under the null hypothesis of correct model, the random vector

(O0, O1, ..., OT ) should follow a multinomial distribution. Kratz et al. (2018) propose several

test statistics to examine this hypothesis. In my application, I choose the Nass test (Nass,

1959) with N = 4, that exhibits to be a good compromise between size and power of test

(for technical details, refer to Kratz et al., 2018).

4.2. Relative Performance Evaluation

To evaluate the relative accuracy and facilitate decision making between different fore-

casting methods, it is necessary to employ loss functions. Models generate low expected

loss arguably preferred over those with higher loss values. To simplify the notation in this

subsection, let Q̂t = Qα,t−1(rt) be the conditional VaR and ÊSt = ESα,t−1(rt) be the con-

ditional ES. Since VaR is elicitable using (3), Giacomini and Komunjer (2005) argues that

this function is a natural choice to compare VaR forecasts:

LQ(Q̂t) = (rt − Q̂t)
[
α− I(rt≤Q̂t)

]
(20)

The recent study of Fissler and Ziegel (2016) suggests a family of strictly consistent loss

functions in which VaR and ES forecasts are jointly elicitable. I adapt a member of this

family defined in Fissler et al. (2015) to jointly compare the forecast errors of VaR and ES

10The use of quantile regressions cannot guard against the possibility of the well-known quantile crossing.
On any day when the issue is observed, I apply the recently developed method of monotonically rearrangement
of Chernozhukov et al. (2010) to correct the problem.
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as:

LFZG(Q̂t, ÊSt) = (I(rt<Q̂t)
− α)Q̂t − I(rt<Q̂t)

rt

+
exp(ÊSt)

1 + exp(ÊSt))

(
ÊSt − Q̂t +

1

α
I(rt<Q̂t)

(Q̂t − rt)
)

(21)

+ ln

(
2

1 + exp(ÊSt)

)

Using these loss functions, I apply the model confidence set (MCS) method of Hansen et al.

(2011) to form a set of superior models. The MCS procedure starts with the initial set of

forecasting models, M0 to deliver the superior set of models M∗
1−α∗ , which contains smaller

number of models, m∗ < M0 , for a given significant level α∗.11 In the main analysis, I use

α∗ = 5% to construct the 5% MCS.12 The test applies an elimination rule where at each

step, a significance test is conducted to eliminate the worst performing model based on an

equivalence test, δM, and an elimination rule eM, as follows:

H0,M : E(∆Li,j,t) = 0, for all i, j ∈M

HA,M : E(∆Li,j,t) 6= 0, for some i, j ∈M

where M ⊂ M0 is the set of remaining models at each step and ∆Li,j,t is the loss difference

between model i and j at time t. If the null hypothesis H0,M is not rejected by the equivalence

test δM, the MCS is defined as M∗
1−α∗ = M. Otherwise, the worst performing model is

eliminated using the elimination rule eM. I employ the equivalence test based on the range

statistic in Hansen et al. (2011):13

TM = max
i∈M
|ti,j| (22)

11Note that I use α∗ to differentiate the significant level of MCS analysis to the quantile level, α, in VaR
and ES forecasts.

12The 10% MCS is presented in Table A.11 and provides similar result.
13I also employ the alternative test statistic in Hansen et al. (2011), which is the semi-quadratic statistic.

The results are presented in Table A.12 and yields similar to the main analysis
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where

ti,j =
∆Li,j√

V̂ ar(∆Li,j)
; ∆Li,j = T−1

T∑
t=1

∆Li,j,t

where ∆Li,j is the average sample loss difference between models i and j, V̂ ar(∆Li,j) is

estimate of the asymptotic variance of ∆Li,j, computed using a block-bootstrap with 10, 000

trials and a block size set at l = 4 observations.14

The elimination rule is then specified as:

eM = arg max
i∈M

sup
j∈M

ti,j (23)

where the model with the highest value of ti,j is eliminated if the null hypothesis is rejected.

The test is sequentially repeated until the MCS is reached at a given confidence level.

5. Empirical Results

5.1. Data

I employ daily U.S. dollar-dominated returns for 42 international indices and the MSCI

World index. I obtain total return indices of 24 developed markets (DM) from FTSE, and for

the 18 emerging markets (EM) indices from the S&P/IFCI database. The series correspond

to highly liquid and investable indices, which track real returns for a foreign investor investing

in the country’s equity market. The sample period is from January 2, 1996 to December

31, 2017 for most of the markets with a total of 5740 days.15 The full list of countries is

provided in Table A.1 in Appendix.

Table 1 reports the descriptive statistics for the index return series. Panel A displays

information about the 1-day return horizon, while Panels B and C present the results for

5- and 10-day horizons, respectively. The columns provide the mean and quantiles for the

cross-sectional distribution of the statistics presented in rows, including the annualised mean,

annualised standard deviation, skewness, kurtosis and the Jarque-Bera statistic. With the

14The MCS results with alternative block sizes (2 and 6) or the use stationary bootstrapping in A.13 give
similar results

15The only two exceptions are Portugal ,which starts on May 04, 1998 and Russia, which starts on April
02, 1997.
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only exception of Portugal, all markets have positive mean returns over the sample in all

the three horizons. The return series have, on average, negatively skewed and leptokurtic

empirical distributions. Notably, average skewness increases in absolute value with horizons

which is in line with the findings of Neuberger (2012) and Ghysels et al. (2016). Indeed,

the Jarque-Bera statistics strongly reject the null hypothesis of normality for all indices and

horizons.

5.2. Estimates of MIDAS-based models

In this paper, I am interested in the VaR and ES forecasts using two commonly used

quantiles in the literature, at α = (0.01, 0.05) probability levels, respectively. I consider

three forecast horizons: 1-day, 5-day and 10-day. The choice of 1-day horizon allows for

direct comparison of my results to the established methods in the literature, which mainly

focus on 1-day ahead forecasts. The choice of 10-day horizon is motivated by the baseline

horizon used for the capital requirements under the Basel III regulatory agreement.

The main focus of this study is to improve the out-of-sample performance of VaR and ES

forecasts using MIDAS-based models. However, the in-sample estimation of the proposed

models provide some noteworthy observations. For this purpose, I present the estimated

parameters of the MIDAS-based models using the first estimation window of 2500 daily

returns. I start by the estimation results for the MSCI world index at α = 0.05.16 Next, I

further examine the cross-sectional variations in parameter estimates across countries.

Table 2 presents results for the AL-based models described in Section 2.1. Columns (1)

are the results for the Midas-AL model, while columns (2) are the results for the MidasAs-

AL model. The row “Log-L” provides the maximised log-likelihood value of AL density

presented in (7), while “Hit” is the empirical violation rate in the estimation sample.

I observe strong time-variation in the conditional VaR since the slope coefficients β1
α,h

(β1−
α,h,β

1+
α,h) are always statistically significant at conventional levels. The γ coefficient govern-

ing the dynamics of conditional ES is also statistically significant across models and horizons.

Not surprisingly, the negative and positive returns have different impact on the quantile dy-

namics, although the asymmetry is less pronounced at longer horizons. For example, the β1+
α,h

16The estimation results for α = 0.01 provide largely similar conclusions and available upon request.

18



estimate at the 1-day horizon is -0.354 and not statistically significant, whereas its value at

the 10-day horizon is 9.548 and highly significant with the magnitude almost equal to that of

β1−
α,h (-10.842). The MidasAs-AL model provides better goodness-of-fit than the symmetric

counterpart as shown by the “Log-L” values. Finally, the percentages of VaR exceedances

are always close to 5%, signalling good tail coverages for both models over the estimation

period.

Table 3 reports the estimated parameters for the EVT-based models. Columns (1) cor-

respond to the Midas-Evt model, while columns (2) refer to the MidasAs-Evt model. I also

report the likelihood value of (7) using estimated VaR and ES for comparison purposes,

although the estimation of EVT-based models does not involve AL density maximisation.

The estimation results are generally in line with those reported in Table 2. The asymmetric

effects of lagged returns become less pronounced at longer horizon. Both models have Hit

percentages close to 5%. Finally, the likelihood values are only slightly lower than their

counterparts in Table 2, which directly maximise the AL likelihood.

Tables 4 and 5 provide a summary of the cross-sectional parameter estimates for the

newly proposed models. Some observations are worth noting. First, the coefficients of neg-

ative lagged returns (β1−
α,h) have greater magnitude on average than those of lagged positive

returns (β1+
α,h). This finding provides evidence of asymmetric effects of lagged returns across

countries and forecast horizons. Second, the cross-sectional standard deviation of parameter

κ2 is relatively more pronounced than those of other parameters, particularly at multi-days

horizons. Although κ2 does not have a direct economic interpretation, this observation in-

dicates significant variation in the shapes of the weighting function applied to the lagged

conditioning variable. Since I apply the same lag length in all estimations, this finding high-

lights the flexibility of the MIDAS framework in capturing significant heterogeneity in tail

dynamics across market indices and forecasting horizons (see, e.g., Gu and Ibragimov, 2018,

for similar evidence of heterogeneity in the tail of international index return using the “Cubic

law”).

5.3. Out-of-Sample Forecast Evaluation

I now focus on the out-of-sample (OOS) VaR and ES forecasts from the MIDAS-based

models and the benchmark models presented in Section 2.2. To this end, I employ a rolling
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window approach with a fixed length of 2500 daily observations. I estimate the parameters for

each model using the most recent 2500 daily observations and obtain VaR and ES forecasts

for all quantile levels and for 1-, 5- and 10-day ahead. Then, I move the estimation window

10 days forward and iterate this procedure until I reach the end of the sample. Thus, this

procedure yields a total of 324 OOS forecasts, spanning the period from August 2, 2005 to

December 30, 2017.

5.3.1. Absolute Forecasting Performance

The results for VaR forecasts of competing models at the 1% and 5% quantile levels are

presented in Table 6. Panel A shows the results for the 1-day horizon, whereas Panels B

and C display the results for 5- and 10-day forecast horizons, respectively. The first two

columns present the empirical hit percentage over the OOS period. For each test, I count

the number of model rejections across the countries. Column ‘Total ’ is the sum of rejections

across quantile levels for each test. For example, the value of 3 for the GARCH-Fhs model

at the 1% quantile in the UC column of Panel A indicates that the 1% VaR forecasts of this

model at the 1-day horizon are rejected by UC test in 3 out of 43 indices. Thus, for each

forecasting horizon, the best model has the lowest value in each column.

The MIDAS-based models provide competitive results to the benchmark models at the

1-day horizon, but superior results at the 5- and 10-day horizons. All models perform

reasonably well in the UC test at 1-day horizons and the levels of hit percentage are close to

the quantile level. At longer forecast horizons, however, all benchmark models significantly

underestimate the risk, whereas the MIDAS-based models produce the violation rates close

to the quantile levels. At 10-day horizon, the two MIDAS-based models with AL density

provide the best performance since they are not rejected in any market at both quantile

levels.

The results from the DQ test offer three additional insights. First, the asymmetric models

often provide smaller number of test rejections than the symmetric alternatives, especially at

the 1-day horizon. However, this effect is considerably weaker at the 10-day horizon, which

is in line with the in-sample estimates of the previous subsection. Second, the performance

of CAViaR-based models deteriorate significantly at the 5- and 10-day forecast horizons. For

instance, the 5% VaR forecast of the As-AL model is rejected in only 3 out of 43 indices
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at the 1-day horizon. This number rises remarkably at the 10-day horizon, indicating that

the As-AL model is rejected in 33 out of 43 markets. Third, the MIDAS-based models

consistently provide competitive performance in all three forecasting horizons. In fact, the

Midas-Evt model has the lowest number of rejections in both the 5- and 10-day forecast

horizons. The contrasting performance between MIDAS-based and CAViaR-based models

at the multi-day horizon highlights the deficiency of temporal aggregation to match target

horizon in VaR forecasts and consistent with the simulation study in Ghysels et al. (2016).

Next, I focus on the result for ES forecasts in Table 7. In the columns, I present evaluation

results for the four ES backtests described earlier in Section 2.3. These tests include the

discrepancy test of McNeil and Frey (2000) (denoted UES1), the unconditional (UES2) and

conditional (CES) tests of Du and Escanciano (2017) and the multi-VaR test of Kratz et al.

(2018). Again, for each test, I report the number of model rejections across countries, while

column ‘Total ’ is the sum of this number across quantile levels. Lower number in each

column indicates superiority.

The results are generally in line with those in Table 6. First, all models provide ac-

ceptable results in two unconditional ES tests with no clear superiority of one model over

another. Second, similar to VaR forecasts, the models with asymmetric specification in

conditional quantile yield smaller numbers of test rejection. This observation, however, is

less pronounced at the 5- and 10-day forecast horizons. Finally, the CAViaR-based models

are clearly the worst performing models, whereas the MIDAS-based models are superior at

multi-day forecasting horizons. Particularly in the multi-VaR test, all benchmark models are

inferior to the new models at 5-day and 10-day horizons17. This finding further highlights

the benefit of MIDAS framework in exploiting the richness of daily returns to forecast the

tail dynamics at multi-day return horizons.

5.3.2. Relative Forecasting Performance

While the absolute performance evaluation is useful to validate the competing models,

it provides little insight about their relative performance. Next, I investigate the relative

performance of forecasting models based on the two loss functions presented in the previous

17The only exception is the MidasAs-AL model at 5-day horizon
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section. Table 8 reports the average OOS forecast losses for all models under consideration.

Panel A shows results for the 1-day horizon, while Panels B and C report results for the 5- and

10-day forecast horizons, respectively. In each panel, I compute the cross-sectional average

of the mean forecast losses across the 43 indices using the LQ and LFZG loss functions, and

then report them separately for the 1% and 5% quantile levels. For each column, I highlight

cell with the best method.

The most accurate methods often appear in the final two rows, which correspond to

the asymmetric MIDAS-based models. The MidasAs-AL model yields the most accurate

forecasts at the 1% quantile, while the MidasAs-Evt is the best model at 5% quantile.

The only exception is the 1-day horizon, for which the GJR-Fhs model achieves the best

performance. The CAViaR-based models also perform well at the 1-day horizon, but their

average losses rise significantly at multi-day forecast horizons.

Table 9 presents the MCS results for the LQ and LFZG loss functions separately for each

quantile level and forecast horizons. The entry in each column counts the number of times

(out of 43 indices), that the model in row is excluded from the 5% MCS. For example, the

entry for LQ function of the GARCH-Fhs model at the 1% quantile level and 1-day horizon

is 7. This number indicates that this model is excluded from the MCS in 7 out 43 cases.

Therefore, a smaller number indicates superior performance cross-sectionally.

The main findings from the MCS results are following. First, in line with the absolute

performance evaluation, there is significant benefit of using asymmetric models at 1-day

horizon, but the impact is less pronounced as the forecast horizon gets longer. Second, the

MidasAs-AL model provides the best overall performance and often be included in the set of

superior models in most cases. For example, this model is never excluded from the MCS in

all indices at both quantile levels at 10-day forecasting horizon. The GARCH-based models

also perform well but are often inferior to the asymmetric MIDAS-based models. Third,

the CAViaR-based models perform worst at the multi-day forecast horizon and are often

excluded from MCS, especially at the 1% quantile level.

Overall, I obtain promising results for the MIDAS-based models for VaR and ES forecasts.

The proposed models consistently belong to the best performing models with low number of

rejections across backtests in all quantile levels and forecasting horizons. The new methods
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also yield the lowest forecast errors and are often included in the set of superior models,

especially at forecasting horizons longer than 1-day ahead. In contrast, the alternative

models that rely on a single-horizon returns are always inferior to all other models at multi-

day forecast horizons. This finding suggests significant benefits of accounting for serial

dependence in short-horizon return process to predict the tail dynamics of long-horizon

return distribution. Finally, I also find evidence supporting the asymmetric specification in

conditional quantile. In terms of ES forecasting method, the jointly model using AL density

generally provide better forecasts than the EVT-based alternative.

6. Robustness Checks

6.1. Model Performance and Market Regimes

The accuracy of risk measures is particularly important during periods of financial dis-

tress. Thus, I evaluate model performance across different market regimes. Especially, I

separate the OOS forecasts into three subsamples: (i) the pre-crisis period from August 2,

2000 to July 31, 2007; (ii) the crisis period from August 1, 2007 to December 31, 2009; (iii)

the post-crisis period from January 1, 2010 to December 31, 2017.

Tables A.3 and A.4 in Appendix report the average OOS forecast losses and MCS results

for the competing models for each forecasting horizon, quantile level and sub-period. Not

surprisingly, the forecast losses increase significantly during the crisis period for all models,

quantile levels and forecasting horizons. This finding is in line with the recent result of

Kourtis et al. (2016) in volatility forecasting. The MIDAS-based models generate similar

forecast losses than GARCH-based models during crisis at 1-day and 5-day horizon, but out-

perform the latter at 10-day horizon. During the pre-crisis and post-crisis sub-samples, the

MIDAS-based models yield the best performance compared to all other competing models.

Consistent with results of the full-sample results, the CAViaR-based forecasts often belong

to the worst performing models in all sub-samples and particularly at multi-days horizons.

Finally, the MidasAs-AL model is often included in the superior set across three sub-samples,

where the superiority is more pronounced at multi-day forecasting horizons.

23



6.2. Alternative Assets

My main results focus on the international equity indices. To provide further evidence, I

investigate model performance using alternative assets. To this end, I source stock prices of

20 largest companies globally from the ”Global Top 100 companies by market capitalisation”

report by PricewaterhouseCoopers (PwC) on March 3, 2018. The companies are: Apple, Mi-

crosoft, Amazon.com, Tencent, Berkshire Hathaway, JPMorgan Chase, Johnson & Johnson,

Exxon Mobile, Bank of America, Royal Dutch Shell, Walmart, Wells Fargo, Intel, Anheuser-

Busch InBev, Taiwan Semiconductor, AT&T, Chevron, PetroChina, Novartis. The data is

collected from DataStream with the maximum available sample period from January 3, 1997

to December 31, 2017.18 I also consider two alternative asset classes, including: the Barclays

U.S. Aggregate Bond Index from September 29, 2003 to December 31, 2017 as a proxy for the

bond class. I also consider the S&P Goldman Sachs Commodity Total Return Index (GSCI)

from January 1, 2003 to December 31, 2017 as a proxy for the commodity class. These two

indices are investable and track the return of an investor from a fully collateralised portfolio

of bonds and commodities. For these two indices, I collect data from the CapitalIQ database.

Table A.5 reports the average OOS forecast losses across the considered assets. In line

with the main analysis, the MIDAS-based models provide clearly the best VaR and ES

forecasts. The asymmetric models yield slightly lower forecast losses than the symmetric

counterparts. This observation is generally in line with the model confidence set results

in Table A.6. An interesting observation is that the performance of CAViaR-based models

with AL density are not considerably inferior to the GARCH-based models compared to the

analysis involving only stock indices.

6.3. Model Performance Between Developed and Emerging Markets

The return distributions in developed and emerging markets are typically characterised

by distinct features. Therefore, it is of interest to compare the model performance between

two the country groups.

Table A.7 provides the average OOS forecast losses separately for each country group.

The forecast losses are substantially higher for the emerging countries in all cases. This

18Some stocks have shorter historical length but the first observation is no later than January 1, 2005
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observation may be the outcome of more noisy data for the emerging stock markets. Nev-

ertheless, the relative performance between competing models is consistent with the main

results. The lowest forecast losses are often recorded in the final two rows, which correspond

to the asymmetric MIDAS-based models. The MCS results in Table A.8 indicate that the

asymmetric MIDAS-based model with AL density provides the best overall performance in

both country groups. Therefore, I conclude that the performance of the new models is robust

to different characteristics in the return process.

6.4. Alternative Window Length

The OOS forecasts in the main analysis is conducted using rolling window of 2500 obser-

vations. This choice is largely driven by the convergence rates of the CAViaR-based models.

The single-horizon setting leads to substantial loss of observation for the model estimation.

For example, the CAViaR-based models are optimized using only 250 non-overlapping re-

turn observations at the 10-day forecast horizon. However, one may concern that using long

estimation windows may give unfair advantage to the MIDAS-based methods, for example,

compared to the GARCH-based models. To explore this issue, I repeat our analysis using

rolling window of 1,500 and 2,000 observations, respectively. In the former case, I exclude

the CAViaR-based models due to their low rates of convergence. Tables A.9 and A.10 in

Appendix show that my main conclusions are robust to the length of rolling windows. No-

tably, the performance of EVT-based models deteriorates remarkably in shorter estimation

windows. This observation is not surprising since the numbers of extreme exceptions in these

cases are lower, which thereby increases estimation errors and reduces the goodness-of-fit in

the GPD estimation.

7. Conclusion

Using the MIDAS framework, I propose new models to directly forecast VaR and ES at

the desired horizon and quantile level. The semiparametric approach allows flexible dynam-

ics in different quantile levels and avoid making distributional assumptions. In addition, the

MIDAS framework utilises the data-rich environment of higher frequency return process to

improve the forecast of the tail dynamics in longer horizon. Using a large cross-section of

international stock indices, I examine the predictive performance of the proposed models

25



relative to several popular forecasting models at various quantile levels and forecast hori-

zons. Using a battery of backtesting procedures, I obtain strong evidence in favor of the

proposed models, which consistently belong to the best performing methods. The MIDAS

framework significantly outperforms the GARCH-based models and the alternative semi-

parametric models which rely on single-period quantile regression. Finally, models that

incorporate asymmetry in the quantile dynamics, and use of the AL density to jointly es-

timate VaR and ES, generally provide the best forecasts across quantile levels and return

horizons. This result is robust to different market regimes, alternative assets and forecast

specifications.

My main analysis focuses on VaR and ES forecast, given their practical importance to

financial institutions and regulators. Given the superiority of MIDAS-based models on quan-

tile forecasts, an interesting question for future research is whether the MIDAS framework

can also improve return density forecast or equity risk premium using the combination of

quantile forecasts. Moreover, several studies document significant explanatory powers of eco-

nomic variables on conditional return distribution features such as volatility (Engle et al.,

2013) or different parts of return density (Cenesizoglu and Timmermann, 2008). Thus, ad-

ditional information from macroeconomic variables can further improve the forecasts of the

tail dynamics. The MIDAS framework provides a suitable setting for incorporating such

variables, which typically sampled at different frequencies. I leave such extensions to the

future research.

26



Table 1 Descriptive Statistics of International Indices

This table reports the descriptive statistics for the cross section of log index returns. The columns show the
mean and quantiles from the distribution of cross-sectional statistics presented in the rows. Panel A reports
the statistics for the 1-day horizon, while Panels B and C show the corresponding statistics for the 5- and
10-day horizon, respectively. The last row in each panel reports the Jaque-Bera test statistics under the null
hypothesis of normally distributed in the return series.

Mean 5% 25% Median 75% 95%

Panel A: 1-day horizon
Mean 0.070 0.024 0.053 0.076 0.086 0.114
Std dev 0.262 0.186 0.222 0.248 0.292 0.410
Skewness -0.206 -0.736 -0.355 -0.192 -0.069 0.300
Kurtosis 12.305 7.291 9.238 10.848 13.230 22.826
Jarque-Bera 30544.96 4426.63 9074.24 14904.09 25029.66 106849.23

Panel B: 5-day horizon
Mean 0.350 0.119 0.265 0.380 0.431 0.569
Std dev 0.631 0.421 0.515 0.598 0.710 1.065
Skewness -0.472 -0.945 -0.695 -0.566 -0.281 0.141
Kurtosis 9.162 5.383 6.228 7.917 10.363 18.562
Jarque-Bera 3083.68 306.03 526.61 1163.91 2698.50 11688.43

Panel C: 10-day horizon
Mean 0.700 0.238 0.530 0.759 0.863 1.137
Std dev 0.855 0.562 0.691 0.810 0.971 1.435
Skewness -0.521 -1.181 -0.718 -0.517 -0.277 0.078
Kurtosis 7.749 4.433 5.342 6.557 8.915 16.746
Jarque-Bera 909.35 57.40 147.94 316.02 930.40 4735.75
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Table 2 Estimation of AL-based Models at 5% quantile for the MSCI World Index

This table provides estimated parameters of two AL-based models under the MIDAS framework for the 5%
quantile level for the MSCI World index. The results are presented for 1-, 5- and 10-day return horizons. The
parameters are estimated using the first moving window with 2500 observations. Columns (1) are the results
for the Midas-AL model, while Columns (2) are the results for the MidasAs-AL model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses below the estimated parameters
are p-values, based on bootstrapped standard errors. For parameter κ2, the null hypothesis is κ2 = 1. The
row Log-L reports the maximised log-likelihood value of AL distribution described in (7), while the row Hit
(%) denotes the percentage of times the VaR is exceeded.

1-day horizon 5-day horizon 10-day horizon

Model (1) (2) (1) (2) (1) (2)

-0.003 -0.004 -0.012 -0.016 -0.036 -0.045
β0
α,h (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

-1.743 -2.706 -4.265 -7.321 -1.865 -10.842
(0.000) (0.000) (0.000) (0.000) (0.007) (0.000)

-0.354 0.966 9.548
β1
α,h

β1−
α,h

β1+
α,h


(0.049) (0.088) (0.000)

8.523 7.147 4.968 3.060 20.039 2.613
κ2 (0.000) (0.000) (0.000) (0.011) (0.034) (0.000)

-1.064 -1.162 -1.228 -0.959 -0.878 -1.081
γ

(0.000) (0.000) (0.000) (0.000) (0.013) (0.000)
Log-L 7092.82 7179.12 931.39 945.11 388.72 406.47

Hit (%) 4.833 4.750 5.000 5.000 5.000 4.583
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Table 3 Estimation of EVT-based Models at 5% quantile for the MSCI World Index

This table provides estimated parameters of two EVT-based models under the MIDAS framework for the 5%
quantile level for the MSCI World index. The results are presented for 1-, 5- and 10-day return horizons. The
parameters are estimated using the first moving window with 2500 observations. Columns (1) are the results
for the Midas-Evt model, while Columns (2) are the results for the MidasAs-Evt model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses below the estimated parameters
are p-values, based on bootstrapped standard errors. For parameter κ2, the null hypothesis is κ2 = 1. The
row Log-L reports the maximised log-likelihood value of AL distribution described in (7), while the row Hit
(%) denotes the percentage of times the VaR is exceeded.

1-day horizon 5-day horizon 10-day horizon

Model (1) (2) (1) (2) (1) (2)

-0.002 -0.004 -0.011 -0.016 -0.031 -0.033
β0
α,h (0.001) (0.000) (0.003) (0.000) (0.003) (0.000)

-1.625 -2.726 -3.201 -7.124 -1.375 -9.564
(0.000) (0.000) (0.000) (0.000) (0.077) (0.000)

0.035 2.116 6.545
β1
α,h

β1−
α,h

β1+
α,h


(0.160) (0.031) (0.000)

8.608 6.073 5.230 2.777 18.960 2.557
κ2 (0.000) (0.000) (0.000) (0.002) (0.000) (0.027)
ξ 0.085 0.185 -0.156 -0.227 0.064 0.053
β 0.349 0.294 0.467 0.520 0.585 0.380

Log-L 7000.13 7166.88 931.06 943.69 386.45 404.36
Hit (%) 5.125 5.250 5.000 5.000 5.417 4.583
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Table 4 Cross-sectional Estimates of AL-based Models at the 5% quantile

This table provides the average of estimated parameters across countries of the AL-based models at the
5% quantile level. Results are reported at 1-day, 5-day and 10-day return horizons, respectively. The
parameters are estimated using the first moving window of 2500 observations. Columns (1) are the results
for the Midas-AL model, while Columns (2) are the results for the MidasAs-AL model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses display cross-sectional standard
deviation of the above parameters.

1-day horizon 5-day horizon 10-day horizon

Model (1) (2) (1) (2) (1) (2)

-0.006 -0.008 -0.018 -0.021 -0.031 -0.034
β0
α,h (0.003) (0.004) (0.018) (0.019) (0.038) (0.032)

-1.674 -2.296 -3.908 -5.705 -5.089 -9.298
(0.278) (0.380) (1.555) (2.541) (3.232) (5.675)

-0.660 -1.678 -0.325
β1
α,h

β1−
α,h

β1+
α,h


(0.424) (2.144) (6.731)

12.606 14.234 21.294 14.901 32.993 12.892
κ2 (7.252) (7.097) (52.672) (24.515) (65.669) (24.757)

-0.914 -0.984 -0.959 -0.961 -1.094 -1.196
γ

(0.185) (0.182) (0.228) (0.218) (0.356) (0.377)
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Table 5 Cross-sectional Estimates of EVT-based Models at the 5% quantile

This table provides the average of estimated parameters across countries of the Evt-based models at the
5% quantile level. Results are reported at 1-day, 5-day and 10-day return horizons, respectively. The
parameters are estimated using the first moving window of 2500 observations. Columns (1) are the results
for the Midas-Evt model, while Columns (2) are the results for the MidasAs-Evt model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses display cross-sectional standard
deviation of the above parameters.

1-day horizon 5-day horizon 10-day horizon

Model (1) (2) (1) (2) (1) (2)

-0.005 -0.006 -0.014 -0.018 -0.021 -0.035
β0
α,h (0.004) (0.004) (0.017) (0.016) (0.032) (0.032)

-1.436 -2.157 -3.432 -4.708 -4.445 -6.723
(0.288) (0.422) (1.367) (2.114) (2.526) (4.324)

-0.450 -1.415 -0.327
β1
α,h

β1−
α,h

β1+
α,h


(0.397) (1.887) (3.800)

11.826 12.823 17.905 19.390 17.246 22.111
κ2 (7.527) (7.474) (53.094) (40.973) (49.149) (56.400)

0.067 0.074 -0.007 0.011 -0.043 0.066
ξ

(0.123) (0.109) (0.256) (0.208) (0.362) (0.397)
0.434 0.407 0.497 0.476 0.512 0.423

ς
(0.057) (0.048) (0.172) (0.138) (0.197) (0.208)
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Table 6 Results of Out-of-Sample VaR Absolute Forecasting Performance

This table summarises the performance of out-of-sample VaR forecasts across 43 international equity indices. Forecasts are

based on rolling window of 2500 observations. Panel A provides the results for the 1-day horizon, while Panels B and C

reports the results for the 5- and 10-day forecast horizons, respectively. The columns labelled Hit(%) report the percentage

of times the VaR estimates are exceeded. The next six columns display the absolute performance of VaR forecasts, based on

the unconditional coverage test (UC) of Kupiec (1995) and the dynamic quantile test (DQ) of Engle and Manganelli (2004).

For each test in column, I report the number of test rejections out of 43 indices at 5% significant level. Lower number implies

superior performance.

Hit(%) UC DQ

Models 1% 5% 1% 5% Total 1% 5% Total

Panel A: 1-day horizon
GARCH-Fhs 1.065 5.021 3 1 4 15 20 35
GARCH-Evt 0.997 5.064 0 0 0 14 19 33
GJR-Fhs 1.063 4.966 3 5 8 11 7 18
GJR-Evt 0.996 5.054 2 4 6 4 5 9
Sav-AL 1.074 4.994 3 1 4 21 21 42
Sav-Evt 1.042 5.188 1 1 2 21 24 45
As-AL 1.069 4.908 5 4 9 12 3 15
As-Evt 1.020 5.024 0 3 3 14 5 19
Midas-AL 1.030 4.950 2 1 3 14 21 35
Midas-Evt 1.021 5.119 1 0 1 19 24 43
MidasAs-AL 1.042 4.897 4 4 8 10 4 14
MidasAs-Evt 0.998 4.975 2 4 6 11 5 16

Panel B: 5-day horizon
GARCH-Fhs 1.529 5.951 7 6 13 15 11 26
GARCH-Evt 1.513 5.920 7 10 17 13 10 23
GJR-Fhs 1.389 5.628 4 4 8 9 7 16
GJR-Evt 1.342 5.520 4 3 7 8 4 12
Sav-AL 1.195 5.030 0 0 0 22 24 46
Sav-Evt 1.267 5.104 0 0 0 16 17 33
As-AL 1.237 4.946 2 4 6 27 15 42
As-Evt 1.269 5.075 1 0 1 19 12 31
Midas-AL 1.023 4.706 1 1 2 11 5 16
Midas-Evt 1.012 4.808 0 1 1 7 4 11
MidasAs-AL 0.924 4.675 1 2 3 12 4 16
MidasAs-Evt 1.015 4.782 0 1 1 8 5 13

Panel C: 10-day horizon
GARCH-Fhs 1.514 5.692 3 2 5 11 5 16
GARCH-Evt 1.514 5.641 2 2 4 13 3 16
GJR-Fhs 1.181 5.307 0 3 3 5 5 10
GJR-Evt 1.188 5.276 1 3 4 6 5 11
Sav-AL 1.261 6.265 3 3 6 21 34 55
Sav-Evt 1.557 5.579 5 1 6 23 17 40
As-AL 1.329 6.530 3 10 13 15 33 48
As-Evt 1.659 5.548 8 1 9 20 14 34
Midas-AL 1.061 4.811 0 0 0 8 1 9
Midas-Evt 1.079 4.427 0 1 1 7 1 8
MidasAs-AL 0.918 4.913 0 0 0 8 2 10
MidasAs-Evt 1.188 4.676 1 1 2 13 2 15
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Table 7 Results of Out-of-Sample ES Absolute Forecasting Performance

This table summarises the performance of out-of-sample ES forecasts across 43 international equity indices. Forecasts are based

on rolling window of 2500 observations. Panel A provides results for the 1-day horizon, while Panels B and C reports results for

the 5- and 10-day forecast horizons, respectively. The next six columns display the absolute performance of ES forecasts, based

on the unconditional ES test of zero discrepancy (UES1) of McNeil and Frey (2000), the unconditional (UES2) and conditional

ES (CES) tests of Du and Escanciano (2017), the multi-VaR test of Kratz et al. (2018). For each test in column, I report the

number of test rejections out of 43 indices at 5% significant level. Lower number implies superior performance.

UES1 UES2 CES

Models 1% 5% Total 1% 5% Total 1% 5% Total MultiVaR

Panel A: 1-day horizon
GARCH-Fhs 1 1 2 2 1 3 16 35 51 1
GARCH-Evt 0 0 0 1 1 2 16 33 49 2
GJR-Fhs 1 0 1 1 3 4 7 12 19 4
GJR-Evt 2 1 3 3 2 5 8 12 20 4
Sav-AL 0 1 1 4 0 4 22 42 64 3
Sav-Evt 1 1 2 4 1 5 23 41 64 5
As-AL 1 2 3 8 3 11 11 15 26 4
As-Evt 1 2 3 6 4 10 11 8 19 4
Midas-AL 0 1 1 5 0 5 25 40 65 3
Midas-Evt 1 0 1 4 0 4 20 41 61 3
Midas-AL 0 2 2 4 2 6 11 10 21 1
Midas-Evt 1 2 3 3 2 5 10 10 20 3

Panel B: 5-day horizon horizon
GARCH-Fhs 1 1 2 3 4 7 1 4 5 8
GARCH-Evt 1 0 1 4 5 9 0 4 4 9
GJR-Fhs 3 2 5 3 3 6 1 4 5 7
GJR-Evt 2 2 4 0 2 2 1 2 3 5
Sav-AL 4 1 5 2 0 2 22 34 56 2
Sav-Evt 0 0 0 0 0 0 7 28 35 2
As-AL 3 3 6 13 0 13 15 13 28 3
As-Evt 2 0 2 3 0 3 11 14 25 4
Midas-AL 0 0 0 1 0 1 5 8 13 1
Midas-Evt 0 0 0 0 0 0 4 4 8 1
Midas-AL 1 0 1 2 1 3 4 5 9 3
Midas-Evt 1 2 3 2 1 3 3 4 7 1

Panel C: 10-day horizon horizon
GARCH-Fhs 1 0 1 0 3 3 2 2 4 6
GARCH-Evt 1 0 1 0 3 3 3 2 5 4
GJR-Fhs 1 0 1 1 1 2 2 4 6 3
GJR-Evt 0 0 0 2 1 3 2 3 5 3
Sav-AL 3 2 5 9 0 9 16 16 32 7
Sav-Evt 0 1 1 3 2 5 12 13 25 6
As-AL 4 6 10 17 2 19 11 13 24 8
As-Evt 0 1 1 3 2 5 9 10 19 8
Midas-AL 0 1 1 1 0 1 4 4 8 1
Midas-Evt 0 0 0 4 1 5 2 2 4 1
Midas-AL 0 2 2 0 1 1 3 2 5 1
Midas-Evt 0 3 3 6 2 8 3 3 6 1
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Appendix A. ONLINE APPENDIX

A.1. List of Index and Forecasting Models

Table A.1 List of VaR and ES Forecasting Models

This table summarizes the competing forecasting models for VaR and ES under consideration.

Abbreviation Description

Benchmark Models

GARCH-Fhs VaR and ES are extracted from the GARCH model of Bollerslev (1987),
assuming a SGE distribution (Theodossiou, 2015) for daily returns. Em-
pirical distribution is approximated using filter historical simulation with
10,000 trials.

GARCH-Evt VaR and ES are extracted from the GARCH model of Bollerslev (1987),
assuming a SGE distribution (Theodossiou, 2015) for daily returns. Empir-
ical distribution is approximated by combining filter historical simulation
and EVT with 10,000 trials.

GJR-Fhs VaR and ES are extracted from the GJR-GARCH model of Glosten et al.
(1993), assuming a SGE distribution (Theodossiou, 2015) for daily returns.
Empirical distribution is approximated using filter historical simulation with
10,000 trials.

GJR-Evt VaR and ES are extracted from the GJR-GARCH model of Glosten et al.
(1993), assuming a SGE distribution (Theodossiou, 2015) for daily returns.
Empirical distribution is approximated by combining filter historical simu-
lation and EVT with 10,000 trials.

Sav-AL VaR and ES are jointly estimated using maximum likelihood of AL den-
sity. VaR follows symmetric absolute value specification in (15), while ES
dynamic follows specification in (8).

Sav-Evt Conditional quantile at threshold level of 7.5% is estimated using CAViaR
model with symmetric absolute value specification in (15). VaR and ES are
jointly computed using the results of McNeil and Frey (2000).

As-AL VaR and ES are jointly estimated using maximum likelihood of AL den-
sity. VaR follows asymmetric slope specification in (16), while ES dynamic
follows specification in (8).

As-Evt Conditional quantile at threshold level of 7.5% is estimated using CAViaR
model with asymmetric slope specification in (16). VaR and ES are jointly
computed using the results of McNeil and Frey (2000).

New Models

Midas-AL VaR and ES are jointly estimated using maximum likelihood of AL density.
VaR follows MIDAS-based symmetric absolute value specification in (1),
while ES dynamic follows specification in (8).

Midas-Evt Conditional quantile at threshold level of 7.5% is estimated using MIDAS
quantile regression with symmetric absolute value specification in (1). VaR
and ES are jointly computed using the results of McNeil and Frey (2000).

MidasAs-AL VaR and ES are jointly estimated using maximum likelihood of AL density.
VaR follows MIDAS-based asymmetric slope specification in (2), while ES
dynamic follows specification in (8).

MidasAs-Evt Conditional quantile at threshold level of 7.5% is estimated using MIDAS
quantile regression with asymmetric slope specification in (2). VaR and ES
are jointly computed using the results of McNeil and Frey (2000).
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Table A.2 List of Country Index and Sources

Country Source

World World Portfolio MSCI
Developed Markets Australia, Austria, Belgium, Canada,

Denmark, Finland, France, Germany,
The Netherlands, Hongkong, Ireland,
Israel, Italia, Japan, South Korea, New
Zealand, Norway, Portugal, Singapore,
Spain, Sweden, Switzerland, United
Kingdom, United States

FTSE

Emerging Markets Brazil, Chile, China, Czech Republic,
Hungary, India, Indonesia, Malaysia,
Mexico, Pakistan, Peru, Philippines,
Poland, Russia, South Africa, Taiwan,
Thailand, Turkey

S&P/IFCI
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Table A.4 Model Confidence Set - Different Market Regimes

This table reports the results of the 5% Model Confidence Set (MCS) for different market regimes at
the 1% and 5% quantile levels for 1-, 5- and 10-day forecast horizons, respectively. The entry in each
column presents the number of times out of 43 indices, that the model in row is excluded from the 5%
MCS. LQ denotes the quantile loss function of (20) and LFZG is the FZG loss function of Fissler et al.
(2015) given in (21). The range statistic in (22) is used to the equivalence test of the MCS. Lower
values corresponds to superior performance.

1-day horizon 5-day horizon 10-day horizon

1% 5% 1% 5% 1% 5%

LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS

Panel A: 02/08/2000 - 31/07/2008 (Pre-crisis Subsample)
GARCH-Fhs 6 6 6 6 6 7 2 2 20 18 4 5
GARCH-Evt 7 6 3 3 3 4 1 1 20 18 4 5
GJR-Fhs 1 1 0 0 11 10 3 3 32 30 9 11
GJR-Evt 2 2 0 0 10 10 3 3 33 31 10 11
Sav-AL 14 14 10 10 17 17 4 4 32 32 11 12
Sav-Evt 15 15 9 9 13 14 3 4 22 21 7 8
As-AL 5 5 3 3 14 14 5 5 33 32 10 12
As-Evt 3 4 2 2 13 13 4 4 31 30 8 12
Midas-AL 13 13 9 9 11 12 6 7 18 18 8 9
Midas-Evt 13 13 7 6 14 15 1 1 24 23 6 7
MidasAs-AL 7 7 5 5 5 6 3 3 13 13 5 6
MidasAs-Evt 4 4 1 1 7 7 1 1 24 25 4 4

Panel B: 01/08/2008 - 31/12/2009 (Crisis Subsample)
GARCH-Fhs 3 3 2 2 5 5 1 1 10 11 2 2
GARCH-Evt 4 4 3 4 5 5 1 1 9 9 2 2
GJR-Fhs 2 2 1 1 4 4 2 1 12 13 2 2
GJR-Evt 2 3 1 1 4 4 2 2 12 13 2 2
Sav-AL 5 5 2 2 20 19 6 6 15 16 4 4
Sav-Evt 5 5 4 4 19 18 8 8 11 12 4 4
As-AL 2 3 2 2 11 11 6 6 15 17 4 5
As-Evt 4 5 1 1 8 7 6 6 10 12 2 2
Midas-AL 3 3 3 3 11 12 1 1 11 11 4 4
Midas-Evt 4 4 3 4 13 13 4 4 11 12 2 2
MidasAs-AL 2 2 1 1 3 3 2 2 3 3 2 2
MidasAs-Evt 4 5 3 3 7 7 1 1 8 9 2 2

Panel C: 01/01/2010 - 31/12/2017 (Crisis Subsample)
GARCH-Fhs 2 3 11 11 7 7 2 2 5 8 3 1
GARCH-Evt 2 2 12 13 7 7 2 2 5 6 3 1
GJR-Fhs 0 0 2 3 5 5 3 3 15 15 3 1
GJR-Evt 3 3 4 4 5 5 3 3 15 15 3 1
Sav-AL 7 7 19 19 18 17 5 6 34 33 6 6
Sav-Evt 4 4 17 17 11 11 4 4 21 28 6 4
As-AL 4 4 2 3 17 16 7 7 33 33 8 6
As-Evt 2 2 5 5 11 11 3 3 24 31 4 4
Midas-AL 6 6 18 18 10 10 5 6 15 15 7 5
Midas-Evt 6 6 16 16 11 11 1 1 15 14 0 0
MidasAs-AL 3 3 2 3 1 2 2 2 2 2 2 0
MidasAs-Evt 1 2 5 5 9 9 1 1 11 17 1 0
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Table A.13 Model Confidence Set - Alternative Bootstrapping Methods

This table reports the results of the 5% Model Confidence Set (MCS) at the 1% and 5% quantile levels
for 1-, 5- and 10-day forecast horizons, respectively. The entry in each column presents the number of
times out of 43 indices, that the model in row is excluded from the 5% MCS. LQ denotes the quantile
loss function of (20) and LFZG is the FZG loss function of Fissler et al. (2015) given in (21). The
range statistic in (22) is used to the equivalence test of the MCS. The test statistic is constructed using
alternative bootstrapping methods. Lower values corresponds to superior performance.

1-day horizon 5-day horizon 10-day horizon

1% 5% 1% 5% 1% 5%

LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS LQ LQS

Panel A: Use of stationary bootstrapping

GARCH-Fhs 7 6 3 3 0 0 0 0 2 3 1 1
GARCH-Evt 5 5 4 4 0 0 0 0 2 3 1 1
GJR-Fhs 2 2 1 1 1 1 0 0 3 4 1 1
GJR-Evt 3 3 1 1 1 1 0 0 3 4 1 1
Sav-AL 10 10 16 19 6 6 5 5 10 13 5 8
Sav-Evt 8 8 13 14 5 5 3 3 3 11 3 5
As-AL 3 3 1 1 3 3 4 4 10 10 4 5
As-Evt 3 3 0 0 1 1 2 2 4 13 1 6
Midas-AL 6 7 15 15 0 0 1 1 3 4 0 0
Midas-Evt 8 8 14 15 1 1 0 0 1 5 0 0
MidasAs-AL 1 1 0 0 0 1 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 0 0 0 0 2 6 0 0

Panel B: Block bootstrapping of length 2

GARCH-Fhs 6 6 3 3 0 1 0 0 2 2 1 1
GARCH-Evt 5 5 4 4 0 1 0 0 2 2 1 1
GJR-Fhs 1 1 1 1 1 1 0 0 3 3 1 1
GJR-Evt 3 3 1 1 1 1 0 0 3 3 1 1
Sav-AL 9 10 18 18 5 3 5 4 11 12 6 4
Sav-Evt 8 8 13 13 3 3 2 3 3 7 3 7
As-AL 3 3 1 1 2 3 3 3 11 10 4 5
As-Evt 3 3 0 0 1 2 2 2 5 12 1 6
Midas-AL 5 6 16 16 0 1 1 1 3 3 0 0
Midas-Evt 8 8 14 15 1 1 0 0 1 4 0 0
MidasAs-AL 1 1 0 0 0 0 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 0 1 0 0 2 4 0 0

Panel C: Block bootstrapping of length 6

GARCH-Fhs 6 6 3 3 1 0 0 0 2 2 1 1
GARCH-Evt 5 5 4 4 1 0 0 0 2 2 1 1
GJR-Fhs 1 1 1 1 2 1 0 0 2 2 1 1
GJR-Evt 3 3 1 1 2 1 0 0 2 2 1 1
Sav-AL 7 7 14 14 3 3 4 3 11 11 4 5
Sav-Evt 8 7 13 14 3 3 1 1 4 9 1 4
As-AL 3 3 1 1 2 1 1 1 10 11 3 3
As-Evt 3 3 0 0 1 1 0 0 3 11 1 4
Midas-AL 6 6 12 13 1 0 0 0 2 2 0 0
Midas-Evt 7 6 12 12 2 1 0 0 1 3 0 0
MidasAs-AL 1 1 0 0 0 0 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 1 0 0 0 1 3 0 0
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