Forecasting Value at Risk and Expected Shortfall with Mixed Data
Sampling

Trung H. Le®"*

@ Norwich Business School, University of East Anglia, United Kingdom
b Banking Faculty, Banking Academy of Vietnam, Vietnam

Abstract
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1. Introduction

The recent 2007-2009 financial crisis has triggered the debate on the accuracy of risk
measurement models, especially those focusing on tail risk. Yet, two important grounds
remain largely unexplored. First, a voluminous literature study tail risk based on Value at
Risk (VaR) estimates, although this measure fails to meet the requirements of a coherent
risk metric as defined by Artzner et al. (1999).) Among the alternatives, expected shortfall

2 Despite its importance, there is little empirical

(ES) has recently gained more attention.
works focusing on ES. This is mainly due to the difficulty in estimation and backtesting
procedures (Gneiting, 2011). Second, the large extant literature focuses on 1-day ahead
risk forecasts, which is clearly insufficient to warn investors and financial institutions and
liquidate their positions. As emphasised by Engle (2011), p. 438, the financial crisis was
predicable one day ahead, and as such, the key failure in risk modelling in financial crisis lies
on their deteriorations in multi-day ahead risk forecasts (Brownlees et al., 2011).

This study addresses these gaps by extending the novel quantile regression based on
Mixed Data Sampling (MIDAS) of Ghysels et al. (2016) to forecast VaR and ES. The new
methods allow for direct forecasting VaR and ES at the desired horizon, while the use of
semiparametric specifications avoids making restrictive assumption about conditional return
distribution. To the best of my knowledge, this is the first study in the literature that
applies MIDAS to obtain ES forecasts. I perform a comprehensive analysis of the forecasting
accuracy of the proposed method. The main analysis involves: 43 international indices; three
forecast horizons (i.e., 1-day, 5-day and 10-day, respectively); twelve forecasting models; six
statistical backtests on both VaR and ES; and an out-of-sample forecast comparison with
two loss functions.

My proposal draws on two streams of the literature. First, it is well-established that

financial return distribution is not normal and this fact is more pronounced at the multi-day

!Previous papers mainly examine the predictive power of risk models in producing VaR forecasts, either
explicitly (see, e.g, Berkowitz et al., 2011; Boucher et al., 2014) or implicitly via volatility forecasting (see,
e.g, Brownlees et al., 2011; Bams et al., 2017)

2The “Minimum capital requirements for market risk” of Basel Committee on Banking Supervision (2016)
has moved toward using ES, as a complement of VaR, to calculate the regulatory capital requirement. This
regulatory agreement is expected to be fully implemented on January 1, 2022.



3 Consequently, a good forecasting model at short horizon, such as 1-day ahead,

horizon.
does not necessary yield accurate forecasts at multi-day horizon. Moreover, each quantile
in a nonnormal distribution may evolve in different dynamics and depends on different sets

4 These observations suggest that a tail risk model may benefit from a di-

of information.
rect estimation of tail area rather than the traditional approach using conditional return
distribution models, such as the GARCH family.

Second, several studies document that the dynamic of return volatility is characterised
by multiple components capturing information at different time horizons.> Given the strong
correlation between volatility and return quantiles, it is natural to calibrate a model that
could capture different components of information in modelling the tail dynamic. Moreover,
Engle (2011) and Neuberger (2012) highlight that long-horizon return distribution depends
crucially on the dynamics in short-horizon return process. Therefore, one needs to take into
account the serial dependence in short-horizon return when forecasting VaR and ES at the
multi-horizon-ahead.

Altogether, T propose to extend the novel MIDAS quantile regression of Ghysels et al.
(2016) to directly forecast VaR and ES at the desired horizon. The MIDAS framework
introduced by Ghysels et al. (2004) provides an efficient method to link variables sampled at
different frequencies. The use of flexible and parsimonious lag polynomials allows MIDAS
to directly forecast lower frequency variables by exploiting the data-rich environment at
higher frequencies. Thus, MIDAS also provides a suitable framework to capture different
components in the tail dynamics by data-driven weighting scheme with flexible shapes. More
importantly, this approach offers a direct projection from short-horizon return to multi-
horizon return distribution. Andreou et al. (2011) locate the MIDAS approach in the middle

of the ‘direct’ and ‘iterate’ methods in the forecasting literature.

3Engle (2011) and Neuberger (2012) find that the asymmetry in return distribution increases with horizon
up to one-year and converges very slowly to normality. Recently, Fama and French (2018) apply bootstrap-
ping simulations and document significant return skewness at even 20- and 30-years returns.

4Cenesizoglu and Timmermann (2008) and Lima and Meng (2017) document asymmetric effects of eco-
nomic variables on different parts of the return distribution and time-variation in their explanatory powers.

®Some notable examples are Chernov et al. (2003), Corsi (2009) and Engle et al. (2013).

6 A number of recent studies document the advantage of applying MIDAS in financial forecasts, including
Andreou et al. (2013); Foroni et al. (2018) for macroeconomic predictions; Pettenuzzo et al. (2016) for return
density; Ghysels et al. (2006) for volatility.



To forecast ES, however, one needs to address its central problem of “non-elicitability”,
which is the lack of a scoring function to facilitate the estimation (Gneiting, 2011). To
overcome this issue, I follow two semiparametric approaches proposed in the literature, which
directly model VaR and ES and allow their dynamics to vary for each quantile levels. I start
from the premise that it is important to account for the serial dependence of higher return
process (i.e. daily, in this study) in modelling the conditional density at the desired horizon
(Neuberger, 2012). For this purpose, I develop the proposed models on the MIDAS-based
quantile regression of Ghysels et al. (2016). In particular, the conditional quantile is based
on a mixture of lagged higher frequency returns, which is driven by the data environment
and flexibly differs for each quantile level and forecast horizon. Moreover, I also develop an
asymmetric specification, which provides better out-of-sample forecast performance than its
symmetric counterparts of Ghysels et al. (2016) in most cases.

In the first approach, I adopt the semiparametric model of Taylor (2019) based on the
Asymmetric Laplace (AL) density. The author explores the fact that although ES is not
individually elicitable, it is jointly elicitable with VaR under a set of suitable scoring functions
(Fissler and Ziegel, 2016). Since the AL log-likelihood is a member of this set, VaR and ES
can be jointly estimated via maximum likelihood of an AL density. In the second approach,
[ follow Manganelli and Engle (2004) to combine quantile regression and extreme value
theory (EVT). The conditional VaR and ES are estimated by fitting a Generalised Pareto
Distribution (GPD) to the extreme observations that exceeded a threshold level.

In the empirical analysis, I employ two alternative semiparametric approaches in the
literature as the benchmark methods. First, I consider the filtered historical simulation ap-
proach introduced by Barone-Adesi et al. (1999) and Giannopoulos and Tunaru (2005). I use
two GARCH models to prefilter the data. VaR and ES forecasts are then obtained from the
empirical distribution approximated from simulated paths of returns at the desired horizon
using bootstrapping methods. Second, I replace MIDAS-based quantile specifications by
the conditional autoregressive VaR (CAViaR) specifications of Engle and Manganelli (2004).
The CAViaR-based dynamics have attractive autoregressive structure, yet one needs to form
a single-horizon return series that matches the forecast horizon in the model estimation (see,

for example, Meng and Taylor, 2018; Taylor, 2019, for applications in VaR and ES forecasts).



I use a battery of statistical tests to compare the out-of-sample VaR and ES forecasts
between competing models. In the first stage, I analyse their absolute performance based
on the desired properties of VaR and ES as risk metrics, such as correct tail coverage and
interdependent exceedances. The backtests include the unconditional coverage test of Kupiec
(1995), the dynamic quantile test of Engle and Manganelli (2004), the unconditional ES test
on violation residuals of McNeil and Frey (2000), the unconditional and conditional ES test
using probability-integral-transform (PIT) of Du and Escanciano (2017) and the multinomial
VaR test of Kratz et al. (2018). In the second stage, I investigate the relative performance
of competing models in term of minimizing two loss functions. To this end, I form a set of
superior models using the Model Confidence Set (MCS) technique of Hansen et al. (2011).

In summary, I obtain strong evidence in favor of the new models across quantile levels
and forecasting horizons. Although my focus is to improve multi-day horizon VaR and ES,
the MIDAS-based models provide competitive performance to the benchmarks at the 1-day
horizon as well. The benefit of MIDAS framework is more pronounced at multi-day forecast
horizons. The MIDAS-based models lead to the lowest number of test rejections for both
VaR and ES forecasts at the 5- and 10-day horizons. The asymmetric MIDAS-based models
generate the lowest forecast errors and are often included in the set of superior models. My
empirical results reveal that the naive aggregation to single-horizon return series leads to
substantial loss in forecasting information as the CAViaR-based models are inferior to all
other models in multi-day forecasting horizons. Finally, I find evidence supporting the joint
model of Taylor (2019) that use the AL likelihood in forecasting VaR and ES. The main
results are robust when I repeat the analysis for individual stocks, alternative asset classes,
different market regimes and separately for developed versus emerging stock markets.

The remainder of the paper is structured as follows. Section 2 introduces my proposed
methods. Section 3 reviews the benchmark methods, while Section 4 presents the backtest-
ing procedures for VaR and ES forecasts. Section 5 presents the empirical results on the
out-of-sample forecast comparison. Section 6 presents several robustness checks on model
performance spanning different market regimes, alternative assets and alternative length of

estimation windows. Section 7 concludes the study.



2. Proposed new methods for VaR and ES forecasts
2.1. The MIDAS-based Conditional Quantile

Let {r;} = In(P;/P;_1) be the daily continuously compounded return series where P is
the closing price of trading day ¢. The h-day horizon return is defined as r; ), = Zle Tiie
The h-day VaR of an asset or portfolio returns at the (1 — «)% confidence level is simply the
conditional quantile at o, Qas—1(r¢s).” The main ingredient of the proposed models is the
MIDAS-based conditional quantile specification introduced by Ghysels et al. (2016). The
conditional quantile of returns at any horizon is specified as a linear function of conditioning

variables, which can be sampled at different frequencies:

D
Qoi1(rin) = By + Ban > alkan)ri—a (1)
d=1

where the absolute daily return |r;_41]| is the conditioning variable with a lag length of D
days. ©q4(.) is the polynomial function that linearly filters the conditioning variable and
projects to the conditional quantile. K, is a low-dimensional parameter vector that parsi-
moniously defines the shape of the filtering function. The vector of estimated parameters
Oan = (B 1, By Kauh) 18 quantile-specific at considered horizon.

A natural extension of (1) is to capture the well-documented asymmetric effects of pos-
itive and negative returns (see, e.g. Engle and Manganelli, 2004; Taylor, 2019). The asym-

metric conditional quantile can be specified as follow:

D D
Qoi1(ren) = B+ Bin D palkan) lir_yr<o)|rian|+855 Y alkan) e yz0)lriarl (2)
-1 =1

where [y is the indicator function. To retain the parsimonious advantage of the MIDAS
framework, I apply one polynomial ¢4(k4) but allowing for different slope coefficients for
negative and positive lagged returns. [ follow Ghysels et al. (2016) to specify @u(ka.n)
by the “Beta” polynomial with two parameters, pq(k1,k2), given that it provides highly

flexible shapes (see, Ghysels et al., 2007, for technical discussions and alternative polynomial

"Throughout the paper, I use the terms ”VaR” and ”conditional quantile” at the a quantile level inter-
changeably to imply the conditional VaR at the (1 — «) confidence level. To simplify the notation, I drop
the horizon subscript h whenever it does not cause confusions, keeping in mind that the series refers to the
h-day horizon from day t to t + h.



functions). I restrict k; = 1 and k9 > 1 in order to have decaying weights on the conditioning
variable.® The lag length is set at D = 100 days for all forecasting horizons. This choice is
based on the observation of Ghysels et al. (2006) that using lags longer than 50 days has little
effect on volatility forecasts up to 20-days horizon. The conditional quantile is estimated by

minimizing the following tick loss function:

T
Oop = argmin T " [rin = Qa1 (ren)] [0 = Ly <Qu prrem)] (3)

0o, t=1

The conditional ES is the expected loss given a VaR violation occurred and can be expressed

as:

ESui—1(ren) = Elreplren < Qai—1(ren)] (4)

In the next subsections, I present two alternative approaches to estimate ES based on the

above MIDAS-based conditional VaR specifications.

2.2. Forecast VaR and ES with Asymmetric Laplace Distribution

In the first approach, I jointly estimate VaR and ES using Asymmetric Laplace (AL)
density as proposed by Taylor (2019). This model is motivated by the work of Koenker and
Machado (1999), who link the minimisation of the ‘tick loss’ function in (3) to the maximum

likelihood of an AL density specified as follows:

fre) = @ea:p <_ (re = Qa(r))(a = I(r < Qa(rt)))

(5)

g

where, for this density, Q,(r;) is the time-varying location, while ¢ > 0 and 0 < a < 1 are
the scale and skew parameters, respectively. Note that the return process is not assumed to
follow AL distribution since the skew parameter « is chosen corresponding to the quantile
level of interest. Taylor (2019) argues that if the scale parameter o varies over time, its

maximum likelihood estimation can be interpreted as the time-varying expectation of the

8Similar Ghysels et al. (2016), I find that optimising both two parameters can improve the goodness-of-fit
in quantile estimate marginally. However, the optimisation comes at significant computational cost and a
lower convergence rate.



‘tick loss’ function:

o= Ei 1 [(re = Qalr)) (0 = 1 (re = Qa(r1)))] (6)

Since Bassett et al. (2004) link the conditional ES to quantile regression by:

BSaia(r) = Beard) = < Bt [ = Qulro) (o= 1 0 = Qu(r))

then (6) can be rewritten in term of conditional ES and conditional mean pu, = E;_1(r) as:
Oy = 04(#7& - ESa,tfl(rt))

Thus, for given specifications on the dynamics of the conditional mean, conditional VaR and

ES, the AL density in (5) can be rewritten in conditional terms as:

-« (re = Qag—1(r)) (o = I(ry < Qap—1(r4))
e — ESmt—l(rt)exp ( a(pr — ESaz1(rt)) )

Without the loss of generality, I specify the conditional mean return as an AR(1) formulation

fr) = (7)

where p; = ag+ a1 to account for possible autocorrelation in the return process. 1 follow

Taylor (2019) to specify conditional ES as an exponential function of the conditional quantile:

ESyi1(re) = [1 +exp(7)] Qu,—1(71) (8)

where 7 controls the joint dynamics of VaR and ES. The use of exponentiation function is
to prevent possible crossovers between conditional VaR and ES. The Q4 ¢—1(r:) can follow
either the MIDAS-based specifications in (1) and (2). Finally, I follow the optimisation
procedure of Taylor (2019) to jointly estimate VaR and ES. To assist the optimisation,
I separately estimate the coefficients in the conditional mean using maximum likelihood
and the conditional quantile using the MIDAS quantile regression.” Next, these optimised
values are combined with 10* randomly sampled candidates for the v coefficient in the ES
formulation to form the vectors of starting parameters. The optimisation is then performed

on the negative of the sample log-likelihood of (7). I term the models which define Qg ¢—1(7)

9The estimation is based on an R code created by the author following the Matlab toolbox provided by
Eric Ghysels



in (1) and (2) as ‘Midas-AL’, and ‘MidasAs-AL’, respectively.
2.3. Forecast of VaR and ES with Ezxtreme Value Theory

In the second approach, I adopt the two-step estimation procedure suggested by Man-
ganelli and Engle (2004). First, the MIDAS quantile regression of Ghysels et al. (2016)
is estimated at a threshold level which is not as extreme as the quantile level of interest.

Similar to Manganelli and Engle (2004), I choose the threshold level at a,, = 7.5%. The

standardised quantile residuals, Z,,, are then obtained as follows:

Tt
Zow = Gt (9)

where D, +—1(r¢) is the conditional quantile at threshold level «,. Second, I fit the Gener-
alised Pareto Distribution (GPD) to the standardised quantile residuals of threshold viola-
tions, i.e Z&d = Z, |Zy, >0 ~ GPD(E, <), where ¢ < 1 is the shape parameter and <
is the scale parameter. Conditional VaR and ES at any quantile level a@ < a,, then can be

computed using the results of McNeil and Frey (2000):

()

T

ESa,tfl(Zau) = Qa,tfl(Zau) ( ! =+ =~ 6 )
1-¢ (1 -8Qa-1(Za,)

Qa,t71<7’t> = Qau,tfl [1 + Qa,tfl(Zaq)]

Esa,t—l(rt) = Qau,t—l [1 + ESa,t—l<Zozu)]

Qui1(Za,) = %

where T;, is the number of exceedances beyond the conditional threshold. In this approach,
I denote the model that uses the (1) specification in quantile regression as ‘Midas-Eut’,

whereas I use the term ‘MidasAs-Evt’ when specification in (2) is used.
3. Benchmark Models

In this section, I present a set of benchmark models to examine the predictive power of
new methods on out-of-sample VaR and ES forecasts. The details of forecasting models are

presented in Table A.1 in Appendix.



3.1. Filtered Historical Simulation

The first benchmark method is the Filtered Historical Simulation (Fhs) introduced by
Barone-Adesi et al. (1999) for VaR and extended to ES by Giannopoulos and Tunaru (2005).
Kuester et al. (2006) find that this approach outperforms the simple historical simulation as
well as the analytical approximation in VaR forecasts.

I consider two GARCH models to prefilter the data, namely the GARCH(1,1) model of
Bollerslev (1987) and its asymmetric version, i.e. GJR-GARCH(1,1) model of Glosten et al.
(1993). Brownlees et al. (2011) document better volatility forecasting performance for the
latter relative to alternative GARCH-type models. To be consistent with the MIDAS-based

models, I model conditional mean as an AR(1) process:
e = ag + a1re1 + 042 (10)
while the conditional variance process is defined as:

GARCH: O't2 = By + 51&'?,1 + 52‘7152,1 (11>
GIJR-GARCH: 0} = By + Bie?_, + Bol(c, <0)eiq + B307, (12)

where ¢; = 0,2; is the residuals from the mean equation and z; is the series of standardised
resdiuals, which follows the standardised Skewed Generalised Error (SGE) distribution of
Theodossiou (2015), i.e. 2z ~ SGE(0,1,\,n). This distribution allows for tail-fatness and
asymmetry in the return process, where the shape parameters —1 < A < 1 and n > 0 control
asymmetry and tail thickness, respectively. The distributional density is symmetric when
A = 0 and skews to the left (right) when A < 0 (A > 0). When A = 0 and n = 2, it gives the
standardised normal distribution (see, e.g., Feunou et al., 2016; Anatolyev and Petukhov,
2016, for application of SGE distribution to financial data).

To estimate conditional VaR and ES at h-day horizon, I perform the following algo-
rithm. First, I randomly sample {zf ,, 2/, .., 2/, } With replacement on day ¢ from the
set of standardised residuals. Then, the sampled residuals are plugged into the conditional
mean and variance equations (i.e., (10) - (12)) to generate a simulated path of returns
{71,749y - Tign}- The bootstrapped h-day return is then constructed as 7}, = Z?Zl T

These above steps are repeated B = 10,000 times to form an empirical return distribution

10



at the h-day horizon, {r{,} = {r},,r7,,...,7,}. Finally, the conditional VaR is obtained as

the o' percentile of the simulated return distribution:

Qz (ren) = {rin}pa (13)
and the corresponding conditional ES is:

1

ESJ(rin) = Ba Z Tf,h](rzh«ag(n,h)) (14)
b=1

where I,b _gs(y,,) 18 an indicator function. I term the VaR and ES forecasts from this
method as " GARCH-Evt” when the conditional variance in (11) is used and ” GJR-Fhs”
when (12) is used.

3.2. EVT-based Filter Historical Simulation

An alternative simulation approach is to combine Fhs with EVT as proposed by McNeil
and Frey (2000). Novales and Garcia-Jorcano (2018) find that the EVT-based models provide
better VaR and ES forecasts than those of non EVT-based models. To this end, I fit a GPD
to the in-sample standardised residuals that exceeded the threshold, which correspond to
the 7.5% percentile of the standardised residuals. Next, I follow McNeil and Frey (2000)
to simulate the conditional return distribution at the h-day horizon using the following
algorithm. Similar to the Fhs, I randomly sample {z/,, 2,5, .., 2/, } with replacement from
the set of standardised residuals. If the bootstrapped z* is lower than the threshold level, I
replace it with a simulated value from a GPD (E,ﬁ), where 5 and 7] are the estimated GPD
parameters from in-sample standardised residuals. Otherwise, the sampled standardised
residuals is used. Then, I obtain the empirical return distribution at the h-day horizon using
B = 10,000 trails similar to the Fhs algorithm, {r{,} = {r{,, 77, ....,77,}. Finally, the
conditional VaR and ES are also obtained by (13) and (14) as above. I term the VaR and
ES forecasts from this approach “GARCH-FEvt” and “GJR-Fuvt”, depending on whether the

filtering model is GARCH(1,1) and GJR-GARCH(1,1), respectively.

3.3. CAViaR-based Models

In the next benchmark method, I replace the MIDAS-based specifications with two ana-
logues drawing from the CAViaR model of Engle and Manganelli (2004):

11



Symmetric Absolute Value:

Qai—1(1t) = o+ B1Qat—2(11—1) + Balri—1] (15)

Asymmetric Slope:

Qat—1(rt) = Bo + L1Qa—2(ri—1) + B3 Iir, s <o)|1e—1|4+55 L1, 0)|re-1] (16)

The conditional VaR and ES are estimated using either AL density or EVT as described
earlier. A contrasting difference between this benchmark method and MIDAS-based models
is the treatment of higher frequency observations. The CAViaR model works exclusively on
single-horizon setting. This means that one needs to aggregate higher frequency returns to
match the target forecasting horizon to perform model estimation. I term the forecasting
models ‘Sav-AL’ and ‘Sav-Fvt’ when symmetric absolute value specification is utilised. Alter-
natively, I refer the models as ‘As-AL’ and ‘As-Fuvt’ when the asymmetric slope specification

is employed.
4. Evaluation Methods for VaR and ES Forecasts

I employ two alternative ways to evaluate the accuracy of out-of-sample VaR and ES
forecasts. First, I assess the absolute performance of VaR and ES forecasts corresponding
to their usages as risk measures. Second, I evaluate the relative performance of competing
models using two loss functions.

4.1. Absolute Performance Evaluation
4.1.1. VaR backtests

I employ two popular tests to investigate the accuracy of VaR forecasts, including the
unconditional coverage (UC) test of Kupiec (1995) and the dynamic quantile (DQ) test of
Engle and Manganelli (2004). Under the null hypothesis of the UC test, the number of
VaR violations is not statistically different from the chosen quantile level. The test can be

performed using the log-likelihood ratio (LR) statistic:

LR = 2[TIn(T,/(aT)) + (T = T)In((T = T,) /(T — aT))]

12



where 7" is the number of observations, « is the probability level and T}, is the number of VaR
exceedances. The LR test statistic follows a x?(1) distribution. Apart from unconditional
coverage, DQ further examines the dependence between VaR violations. The test statistic
involves a transformation of VaR series to a hit sequence, Hit; = I(;,<Q, 1 (r)) — @- Under
the null hypothesis of correct VaR forecasts, Hit; should have a zero unconditional and
conditional expectation given the information set available at time ¢ — 1. The test can be
performed using a linear regression Hit; = X +¢;, where X is a set of potential explanatory
variables, including a constant, the current level of VaR and five lags of Hit;. The test

statistic is specified as:
VXXV
DQ=———
a(l — a)
where b are the estimated coefficients of the linear regression and the D() test statistic follows

x?(7) distribution, where 7 is the column dimension of X.

4.1.2. ES backtests

I consider three backtesting procedures for ES forecasts. First, I employ the discrep-
ancy test of McNeil and Frey (2000). After standardizing by corresponding VaR estimates,
the standardised discrepancies between VaR violations and ES forecasts should have uncon-
ditional mean of zero under correct risk model. This null hypothesis can be tested using
bootstrap method with 10,000 trials as documented in McNeil and Frey (2000).

Second, I adopt the unconditional and conditional ES tests of Du and Escanciano (2017)
due to their analogy with the VaR backtests. Instead of explicitly employing ES estimates,
they implicitly examine the accuracy of the risk model in tail coverage. These tests are
based on the observation that VaR violations should form a class of martingale difference
sequence (MDS), indexed by the considered quantile level. Du and Escanciano (2017) argue
that the cumulative violations also form MDS and provide meaningful information about the
conditional tail when a violation occurs to backtest ES. The cumulative violation process is
defined as the integral of VaR violations:

Hi(a) = 1 /Oa hy(u)du

«

13



where hy(u) = I(,<q,,_.(r)) is the hit indicator at quantile level, u, at time ¢. If the risk
model is correctly specified, h;(u) has mean w. Similar to Du and Escanciano (2017), I
define u; = F(rt|5a,Qt,1) for computational purposes, where F(.|€;_1) is the conditional
cumulative return distribution given the estimated parameters of the risk model, éa. Then,

hy(w) = I(ry<Qu—1(r)) = L(us<u) and the cumulative violations process can be written as:

~ 1

a 1 R
Ht(a7 901) = a/ I(ut<u)du = a(a - ut)I(ﬁt<a)
0

The unconditional ES test can be conducted by testing the null hypothesis Hy : E [Ht(a, ga)] =

a/2 using a standard t-test:

_ VT (H(a) — a/2) N
Uss = ~— ey N(0,1) (17)

where T is the number of forecasts and var(H;(a)) = \/a(1/3 — a/4), and H(a) is the
sample mean of {H(a)}Z,. The conditional ES test can be obtained by checking the null
hypothesis being Hy : E [Ht(a,aa) — 04/2|Qt_1] = 0. For this purpose, the lag-j autovari-

ance, vr;, and autocorrelation, pr;, of {H;(«)}_, for j > 0 are defined as:

T
1 ,
1= s 2 [Hile) = /2] [Hesfo) — a2 and pry =1
t=j+1

To be consistent with the D() test, I chose a lag order m = 5. The test can then be conducted

using a simple Box-Pierce test statistic.
T
Crs(m) = N7 ~ X, (15)
j=1

Finally, I employ the multinomial VaR (MultiVaR) test of Kratz et al. (2018) to evaluate the
accuracy in tail coverage by simultaneously testing VaR estimates at multiple quantile levels.
From a practical viewpoint, this test has the advantage of not having to store predictive
distribution F'(.|Q;_1) from the risk model at each forecast. For a given starting quantile

level of interest, «, I consider a series of VaR forecasts at levels oy, .., ay given by:

1
aj=a+‘7T(1—a), j=1,.,N (19)

14



I consider the starting quantile level a = 0.025 , which is equivalent to backtesting ES
forecasts at the 2.5% quantile level. This choice is motivated by the requirement of Basel
Committee on Banking Supervision (2016) for ES forecasts.!® The sequence X; = Z;VZI I
with I, ; = I(n<Qaj,t_1) counts the number of VaR estimates being violated at each time ¢.
Similar to the individual VaR estimate, the sequence (X;) should satisfy the unconditional
coverage, i.e. P(X; < j) = aj41,5 = 0,...,N for all ¢ and the conditional coverage, i.e.
X is independent of X for all s # ¢t. Kratz et al. (2018) show that the two above condi-
tions can be tested using multinomial distribution MN(T', (py, ..., Py)) where T is number of
trials. At each trial, I observe N + 1 outcomes (0,1, ..., N) depending on how many VaR
levels are breached with corresponding probabilities py, ..., py. The observed cell counts are
defined as O; = Z?zl Ix,—;. Under the null hypothesis of correct model, the random vector
(Og, O1, ..., Or) should follow a multinomial distribution. Kratz et al. (2018) propose several
test statistics to examine this hypothesis. In my application, I choose the Nass test (Nass,

1959) with N = 4, that exhibits to be a good compromise between size and power of test

(for technical details, refer to Kratz et al., 2018).

4.2. Relative Performance Evaluation

To evaluate the relative accuracy and facilitate decision making between different fore-
casting methods, it is necessary to employ loss functions. Models generate low expected
loss arguably preferred over those with higher loss values. To simplify the notation in this
subsection, let @t = Qa.t—1(rt) be the conditional VaR and Et%’t = ESq:-1(r¢) be the con-
ditional ES. Since VaR is elicitable using (3), Giacomini and Komunjer (2005) argues that

this function is a natural choice to compare VaR forecasts:

Lo(Q) = (o= Q) [a = Iz, | (20)

The recent study of Fissler and Ziegel (2016) suggests a family of strictly consistent loss
functions in which VaR and ES forecasts are jointly elicitable. I adapt a member of this

family defined in Fissler et al. (2015) to jointly compare the forecast errors of VaR and ES

10The use of quantile regressions cannot guard against the possibility of the well-known quantile crossing.
On any day when the issue is observed, I apply the recently developed method of monotonically rearrangement
of Chernozhukov et al. (2010) to correct the problem.
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as:
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Using these loss functions, I apply the model confidence set (MCS) method of Hansen et al.

(2011) to form a set of superior models. The MCS procedure starts with the initial set of
forecasting models, Mj to deliver the superior set of models M7 ., which contains smaller
number of models, m* < M, , for a given significant level o*.!! In the main analysis, I use
a* = 5% to construct the 5% MCS.'? The test applies an elimination rule where at each
step, a significance test is conducted to eliminate the worst performing model based on an

equivalence test, dy, and an elimination rule ey, as follows:

HO,M : E(ALIL’J’t) = 0, for all Z,] eM

Hywm: E(AL; j;) #0, forsome i,j €M

where Ml C M, is the set of remaining models at each step and AL, ;, is the loss difference
between model 7 and j at time ¢. If the null hypothesis Hy 5s is not rejected by the equivalence
test oy, the MCS is defined as M;_ . = M. Otherwise, the worst performing model is
eliminated using the elimination rule ey. I employ the equivalence test based on the range

statistic in Hansen et al. (2011):'3

Thn — y
1 = maxlt| (22)

"Note that I use o* to differentiate the significant level of MCS analysis to the quantile level, o, in VaR
and ES forecasts.

12The 10% MCS is presented in Table A.11 and provides similar result.

131 also employ the alternative test statistic in Hansen et al. (2011), which is the semi-quadratic statistic.
The results are presented in Table A.12 and yields similar to the main analysis
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where

AL; ; d
tij=————te : AL;=T"" Z ALy

\/ @(Ez,]) t=1

where EM is the average sample loss difference between models i and 7, @“(H”) is

estimate of the asymptotic variance of AL; ;, computed using a block-bootstrap with 10,000

trials and a block size set at | = 4 observations.*
The elimination rule is then specified as:
ey = argmax supt; ; (23)
ieM  jeM

where the model with the highest value of ¢; ; is eliminated if the null hypothesis is rejected.

The test is sequentially repeated until the MCS is reached at a given confidence level.

5. Empirical Results
5.1. Data

I employ daily U.S. dollar-dominated returns for 42 international indices and the MSCI
World index. I obtain total return indices of 24 developed markets (DM) from FTSE, and for
the 18 emerging markets (EM) indices from the S&P/IFCI database. The series correspond
to highly liquid and investable indices, which track real returns for a foreign investor investing
in the country’s equity market. The sample period is from January 2, 1996 to December
31, 2017 for most of the markets with a total of 5740 days.'> The full list of countries is
provided in Table A.1 in Appendix.

Table 1 reports the descriptive statistics for the index return series. Panel A displays
information about the 1-day return horizon, while Panels B and C present the results for
5- and 10-day horizons, respectively. The columns provide the mean and quantiles for the
cross-sectional distribution of the statistics presented in rows, including the annualised mean,

annualised standard deviation, skewness, kurtosis and the Jarque-Bera statistic. With the

14The MCS results with alternative block sizes (2 and 6) or the use stationary bootstrapping in A.13 give
similar results

15The only two exceptions are Portugal ,which starts on May 04, 1998 and Russia, which starts on April
02, 1997.
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only exception of Portugal, all markets have positive mean returns over the sample in all
the three horizons. The return series have, on average, negatively skewed and leptokurtic
empirical distributions. Notably, average skewness increases in absolute value with horizons
which is in line with the findings of Neuberger (2012) and Ghysels et al. (2016). Indeed,
the Jarque-Bera statistics strongly reject the null hypothesis of normality for all indices and

horizons.

5.2. Estimates of MIDAS-based models

In this paper, I am interested in the VaR and ES forecasts using two commonly used
quantiles in the literature, at @ = (0.01,0.05) probability levels, respectively. I consider
three forecast horizons: 1-day, 5-day and 10-day. The choice of 1-day horizon allows for
direct comparison of my results to the established methods in the literature, which mainly
focus on 1-day ahead forecasts. The choice of 10-day horizon is motivated by the baseline
horizon used for the capital requirements under the Basel III regulatory agreement.

The main focus of this study is to improve the out-of-sample performance of VaR and ES
forecasts using MIDAS-based models. However, the in-sample estimation of the proposed
models provide some noteworthy observations. For this purpose, I present the estimated
parameters of the MIDAS-based models using the first estimation window of 2500 daily
returns. I start by the estimation results for the MSCI world index at o = 0.05.16 Next, I
further examine the cross-sectional variations in parameter estimates across countries.

Table 2 presents results for the AL-based models described in Section 2.1. Columns (1)
are the results for the Midas-AL model, while columns (2) are the results for the MidasAs-
AL model. The row “Log-L” provides the maximised log-likelihood value of AL density
presented in (7), while “Hit” is the empirical violation rate in the estimation sample.

I observe strong time-variation in the conditional VaR since the slope coefficients £,
( Oll_h,ﬁgjl) are always statistically significant at conventional levels. The ~ coefficient govern-
ing the dynamics of conditional ES is also statistically significant across models and horizons.
Not surprisingly, the negative and positive returns have different impact on the quantile dy-

namics, although the asymmetry is less pronounced at longer horizons. For example, the (ﬁ

16The estimation results for o = 0.01 provide largely similar conclusions and available upon request.
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estimate at the 1-day horizon is -0.354 and not statistically significant, whereas its value at
the 10-day horizon is 9.548 and highly significant with the magnitude almost equal to that of

;71 (-10.842). The MidasAs-AL model provides better goodness-of-fit than the symmetric
counterpart as shown by the “Log-L” values. Finally, the percentages of VaR exceedances
are always close to 5%, signalling good tail coverages for both models over the estimation
period.

Table 3 reports the estimated parameters for the EVT-based models. Columns (1) cor-
respond to the Midas-Fvt model, while columns (2) refer to the MidasAs-Evt model. 1 also
report the likelihood value of (7) using estimated VaR and ES for comparison purposes,
although the estimation of EVT-based models does not involve AL density maximisation.
The estimation results are generally in line with those reported in Table 2. The asymmetric
effects of lagged returns become less pronounced at longer horizon. Both models have Hit
percentages close to 5%. Finally, the likelihood values are only slightly lower than their
counterparts in Table 2, which directly maximise the AL likelihood.

Tables 4 and 5 provide a summary of the cross-sectional parameter estimates for the
newly proposed models. Some observations are worth noting. First, the coefficients of neg-
ative lagged returns (ﬁi’h) have greater magnitude on average than those of lagged positive
returns (ﬁ(ﬁ) This finding provides evidence of asymmetric effects of lagged returns across
countries and forecast horizons. Second, the cross-sectional standard deviation of parameter
ko is relatively more pronounced than those of other parameters, particularly at multi-days
horizons. Although ks does not have a direct economic interpretation, this observation in-
dicates significant variation in the shapes of the weighting function applied to the lagged
conditioning variable. Since I apply the same lag length in all estimations, this finding high-
lights the flexibility of the MIDAS framework in capturing significant heterogeneity in tail
dynamics across market indices and forecasting horizons (see, e.g., Gu and Ibragimov, 2018,
for similar evidence of heterogeneity in the tail of international index return using the “Cubic

law”).
5.3. Out-of-Sample Forecast Fvaluation

I now focus on the out-of-sample (OOS) VaR and ES forecasts from the MIDAS-based

models and the benchmark models presented in Section 2.2. To this end, I employ a rolling
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window approach with a fixed length of 2500 daily observations. I estimate the parameters for
each model using the most recent 2500 daily observations and obtain VaR and ES forecasts
for all quantile levels and for 1-; 5- and 10-day ahead. Then, I move the estimation window
10 days forward and iterate this procedure until I reach the end of the sample. Thus, this
procedure yields a total of 324 OOS forecasts, spanning the period from August 2, 2005 to
December 30, 2017.

5.3.1. Absolute Forecasting Performance

The results for VaR forecasts of competing models at the 1% and 5% quantile levels are
presented in Table 6. Panel A shows the results for the 1-day horizon, whereas Panels B
and C display the results for 5- and 10-day forecast horizons, respectively. The first two
columns present the empirical hit percentage over the OOS period. For each test, I count
the number of model rejections across the countries. Column ‘Total’ is the sum of rejections
across quantile levels for each test. For example, the value of 3 for the GARCH-Fhs model
at the 1% quantile in the UC column of Panel A indicates that the 1% VaR forecasts of this
model at the 1-day horizon are rejected by UC test in 3 out of 43 indices. Thus, for each
forecasting horizon, the best model has the lowest value in each column.

The MIDAS-based models provide competitive results to the benchmark models at the
1-day horizon, but superior results at the 5- and 10-day horizons. All models perform
reasonably well in the UC test at 1-day horizons and the levels of hit percentage are close to
the quantile level. At longer forecast horizons, however, all benchmark models significantly
underestimate the risk, whereas the MIDAS-based models produce the violation rates close
to the quantile levels. At 10-day horizon, the two MIDAS-based models with AL density
provide the best performance since they are not rejected in any market at both quantile
levels.

The results from the DQ test offer three additional insights. First, the asymmetric models
often provide smaller number of test rejections than the symmetric alternatives, especially at
the 1-day horizon. However, this effect is considerably weaker at the 10-day horizon, which
is in line with the in-sample estimates of the previous subsection. Second, the performance
of CAViaR-based models deteriorate significantly at the 5- and 10-day forecast horizons. For
instance, the 5% VaR forecast of the As-AL model is rejected in only 3 out of 43 indices
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at the 1-day horizon. This number rises remarkably at the 10-day horizon, indicating that
the As-AL model is rejected in 33 out of 43 markets. Third, the MIDAS-based models
consistently provide competitive performance in all three forecasting horizons. In fact, the
Midas-Evt model has the lowest number of rejections in both the 5- and 10-day forecast
horizons. The contrasting performance between MIDAS-based and CAViaR-based models
at the multi-day horizon highlights the deficiency of temporal aggregation to match target
horizon in VaR forecasts and consistent with the simulation study in Ghysels et al. (2016).

Next, I focus on the result for ES forecasts in Table 7. In the columns, I present evaluation
results for the four ES backtests described earlier in Section 2.3. These tests include the
discrepancy test of McNeil and Frey (2000) (denoted UES1), the unconditional (UES2) and
conditional (CES) tests of Du and Escanciano (2017) and the multi-VaR test of Kratz et al.
(2018). Again, for each test, I report the number of model rejections across countries, while
column ‘Total’ is the sum of this number across quantile levels. Lower number in each
column indicates superiority.

The results are generally in line with those in Table 6. First, all models provide ac-
ceptable results in two unconditional ES tests with no clear superiority of one model over
another. Second, similar to VaR forecasts, the models with asymmetric specification in
conditional quantile yield smaller numbers of test rejection. This observation, however, is
less pronounced at the 5- and 10-day forecast horizons. Finally, the CAViaR-based models
are clearly the worst performing models, whereas the MIDAS-based models are superior at
multi-day forecasting horizons. Particularly in the multi-VaR test, all benchmark models are
inferior to the new models at 5-day and 10-day horizons'”. This finding further highlights
the benefit of MIDAS framework in exploiting the richness of daily returns to forecast the

tail dynamics at multi-day return horizons.

5.3.2. Relative Forecasting Performance
While the absolute performance evaluation is useful to validate the competing models,
it provides little insight about their relative performance. Next, I investigate the relative

performance of forecasting models based on the two loss functions presented in the previous

1"The only exception is the MidasAs-AL model at 5-day horizon
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section. Table 8 reports the average OOS forecast losses for all models under consideration.
Panel A shows results for the 1-day horizon, while Panels B and C report results for the 5- and
10-day forecast horizons, respectively. In each panel, I compute the cross-sectional average
of the mean forecast losses across the 43 indices using the Lg and Lpz¢ loss functions, and
then report them separately for the 1% and 5% quantile levels. For each column, I highlight
cell with the best method.

The most accurate methods often appear in the final two rows, which correspond to
the asymmetric MIDAS-based models. The MidasAs-AL model yields the most accurate
forecasts at the 1% quantile, while the MidasAs-Evt is the best model at 5% quantile.
The only exception is the 1-day horizon, for which the GJR-Fhs model achieves the best
performance. The CAViaR-based models also perform well at the 1-day horizon, but their
average losses rise significantly at multi-day forecast horizons.

Table 9 presents the MCS results for the Lg and Lpzq loss functions separately for each
quantile level and forecast horizons. The entry in each column counts the number of times
(out of 43 indices), that the model in row is excluded from the 5% MCS. For example, the
entry for Ly function of the GARCH-Fhs model at the 1% quantile level and 1-day horizon
is 7. This number indicates that this model is excluded from the MCS in 7 out 43 cases.
Therefore, a smaller number indicates superior performance cross-sectionally.

The main findings from the MCS results are following. First, in line with the absolute
performance evaluation, there is significant benefit of using asymmetric models at 1-day
horizon, but the impact is less pronounced as the forecast horizon gets longer. Second, the
MidasAs-AL model provides the best overall performance and often be included in the set of
superior models in most cases. For example, this model is never excluded from the MCS in
all indices at both quantile levels at 10-day forecasting horizon. The GARCH-based models
also perform well but are often inferior to the asymmetric MIDAS-based models. Third,
the CAViaR-based models perform worst at the multi-day forecast horizon and are often
excluded from MCS, especially at the 1% quantile level.

Overall, I obtain promising results for the MIDAS-based models for VaR and ES forecasts.
The proposed models consistently belong to the best performing models with low number of

rejections across backtests in all quantile levels and forecasting horizons. The new methods
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also yield the lowest forecast errors and are often included in the set of superior models,
especially at forecasting horizons longer than 1-day ahead. In contrast, the alternative
models that rely on a single-horizon returns are always inferior to all other models at multi-
day forecast horizons. This finding suggests significant benefits of accounting for serial
dependence in short-horizon return process to predict the tail dynamics of long-horizon
return distribution. Finally, I also find evidence supporting the asymmetric specification in
conditional quantile. In terms of ES forecasting method, the jointly model using AL density

generally provide better forecasts than the EVT-based alternative.

6. Robustness Checks
6.1. Model Performance and Market Regimes

The accuracy of risk measures is particularly important during periods of financial dis-
tress. Thus, I evaluate model performance across different market regimes. Especially, I
separate the OOS forecasts into three subsamples: (i) the pre-crisis period from August 2,
2000 to July 31, 2007; (ii) the crisis period from August 1, 2007 to December 31, 2009; (iii)
the post-crisis period from January 1, 2010 to December 31, 2017.

Tables A.3 and A.4 in Appendix report the average OOS forecast losses and MCS results
for the competing models for each forecasting horizon, quantile level and sub-period. Not
surprisingly, the forecast losses increase significantly during the crisis period for all models,
quantile levels and forecasting horizons. This finding is in line with the recent result of
Kourtis et al. (2016) in volatility forecasting. The MIDAS-based models generate similar
forecast losses than GARCH-based models during crisis at 1-day and 5-day horizon, but out-
perform the latter at 10-day horizon. During the pre-crisis and post-crisis sub-samples, the
MIDAS-based models yield the best performance compared to all other competing models.
Consistent with results of the full-sample results, the CAViaR-based forecasts often belong
to the worst performing models in all sub-samples and particularly at multi-days horizons.
Finally, the MidasAs-AL model is often included in the superior set across three sub-samples,

where the superiority is more pronounced at multi-day forecasting horizons.
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6.2. Alternative Assets

My main results focus on the international equity indices. To provide further evidence, I
investigate model performance using alternative assets. To this end, I source stock prices of
20 largest companies globally from the ” Global Top 100 companies by market capitalisation”
report by PricewaterhouseCoopers (PwC) on March 3, 2018. The companies are: Apple, Mi-
crosoft, Amazon.com, Tencent, Berkshire Hathaway, JPMorgan Chase, Johnson & Johnson,
Exxon Mobile, Bank of America, Royal Dutch Shell, Walmart, Wells Fargo, Intel, Anheuser-
Busch InBev, Taiwan Semiconductor, AT&T, Chevron, PetroChina, Novartis. The data is
collected from DataStream with the maximum available sample period from January 3, 1997
to December 31, 2017.18 T also consider two alternative asset classes, including: the Barclays
U.S. Aggregate Bond Index from September 29, 2003 to December 31, 2017 as a proxy for the
bond class. I also consider the S&P Goldman Sachs Commodity Total Return Index (GSCI)
from January 1, 2003 to December 31, 2017 as a proxy for the commodity class. These two
indices are investable and track the return of an investor from a fully collateralised portfolio
of bonds and commodities. For these two indices, I collect data from the Capitall() database.

Table A.5 reports the average OOS forecast losses across the considered assets. In line
with the main analysis, the MIDAS-based models provide clearly the best VaR and ES
forecasts. The asymmetric models yield slightly lower forecast losses than the symmetric
counterparts. This observation is generally in line with the model confidence set results
in Table A.6. An interesting observation is that the performance of CAViaR-based models
with AL density are not considerably inferior to the GARCH-based models compared to the

analysis involving only stock indices.

6.3. Model Performance Between Developed and Emerging Markets

The return distributions in developed and emerging markets are typically characterised
by distinct features. Therefore, it is of interest to compare the model performance between
two the country groups.

Table A.7 provides the average OOS forecast losses separately for each country group.

The forecast losses are substantially higher for the emerging countries in all cases. This

18Some stocks have shorter historical length but the first observation is no later than January 1, 2005
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observation may be the outcome of more noisy data for the emerging stock markets. Nev-
ertheless, the relative performance between competing models is consistent with the main
results. The lowest forecast losses are often recorded in the final two rows, which correspond
to the asymmetric MIDAS-based models. The MCS results in Table A.8 indicate that the
asymmetric MIDAS-based model with AL density provides the best overall performance in
both country groups. Therefore, I conclude that the performance of the new models is robust

to different characteristics in the return process.

6.4. Alternative Window Length

The OOS forecasts in the main analysis is conducted using rolling window of 2500 obser-
vations. This choice is largely driven by the convergence rates of the CAViaR-based models.
The single-horizon setting leads to substantial loss of observation for the model estimation.
For example, the CAViaR-based models are optimized using only 250 non-overlapping re-
turn observations at the 10-day forecast horizon. However, one may concern that using long
estimation windows may give unfair advantage to the MIDAS-based methods, for example,
compared to the GARCH-based models. To explore this issue, I repeat our analysis using
rolling window of 1,500 and 2,000 observations, respectively. In the former case, I exclude
the CAViaR-based models due to their low rates of convergence. Tables A.9 and A.10 in
Appendix show that my main conclusions are robust to the length of rolling windows. No-
tably, the performance of EVT-based models deteriorates remarkably in shorter estimation
windows. This observation is not surprising since the numbers of extreme exceptions in these
cases are lower, which thereby increases estimation errors and reduces the goodness-of-fit in

the GPD estimation.

7. Conclusion

Using the MIDAS framework, I propose new models to directly forecast VaR and ES at
the desired horizon and quantile level. The semiparametric approach allows flexible dynam-
ics in different quantile levels and avoid making distributional assumptions. In addition, the
MIDAS framework utilises the data-rich environment of higher frequency return process to
improve the forecast of the tail dynamics in longer horizon. Using a large cross-section of

international stock indices, I examine the predictive performance of the proposed models
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relative to several popular forecasting models at various quantile levels and forecast hori-
zons. Using a battery of backtesting procedures, I obtain strong evidence in favor of the
proposed models, which consistently belong to the best performing methods. The MIDAS
framework significantly outperforms the GARCH-based models and the alternative semi-
parametric models which rely on single-period quantile regression. Finally, models that
incorporate asymmetry in the quantile dynamics, and use of the AL density to jointly es-
timate VaR and ES, generally provide the best forecasts across quantile levels and return
horizons. This result is robust to different market regimes, alternative assets and forecast
specifications.

My main analysis focuses on VaR and ES forecast, given their practical importance to
financial institutions and regulators. Given the superiority of MIDAS-based models on quan-
tile forecasts, an interesting question for future research is whether the MIDAS framework
can also improve return density forecast or equity risk premium using the combination of
quantile forecasts. Moreover, several studies document significant explanatory powers of eco-
nomic variables on conditional return distribution features such as volatility (Engle et al.,
2013) or different parts of return density (Cenesizoglu and Timmermann, 2008). Thus, ad-
ditional information from macroeconomic variables can further improve the forecasts of the
tail dynamics. The MIDAS framework provides a suitable setting for incorporating such
variables, which typically sampled at different frequencies. 1 leave such extensions to the

future research.
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Table 1 Descriptive Statistics of International Indices

This table reports the descriptive statistics for the cross section of log index returns. The columns show the
mean and quantiles from the distribution of cross-sectional statistics presented in the rows. Panel A reports
the statistics for the 1-day horizon, while Panels B and C show the corresponding statistics for the 5- and
10-day horizon, respectively. The last row in each panel reports the Jaque-Bera test statistics under the null
hypothesis of normally distributed in the return series.

Mean 5% 25% Median 75% 95%
Panel A: 1-day horizon
Mean 0.070 0.024 0.053 0.076 0.086 0.114
Std dev 0.262 0.186 0.222 0.248 0.292 0.410
Skewness -0.206 -0.736 -0.355 -0.192 -0.069 0.300
Kurtosis 12.305 7.291 9.238 10.848 13.230 22.826
Jarque-Bera 30544.96 4426.63 9074.24 14904.09 25029.66 106849.23
Panel B: 5-day horizon
Mean 0.350 0.119 0.265 0.380 0.431 0.569
Std dev 0.631 0.421 0.515 0.598 0.710 1.065
Skewness -0.472 -0.945 -0.695 -0.566 -0.281 0.141
Kurtosis 9.162 5.383 6.228 7.917 10.363 18.562
Jarque-Bera 3083.68 306.03 526.61 1163.91 2698.50 11688.43
Panel C: 10-day horizon
Mean 0.700 0.238 0.530 0.759 0.863 1.137
Std dev 0.855 0.562 0.691 0.810 0.971 1.435
Skewness -0.521 -1.181 -0.718 -0.517 -0.277 0.078
Kurtosis 7.749 4.433 5.342 6.557 8.915 16.746
Jarque-Bera 909.35 57.40 147.94 316.02 930.40 4735.75
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Table 2 Estimation of AL-based Models at 5% quantile for the MSCI World Index

This table provides estimated parameters of two AL-based models under the MIDAS framework for the 5%
quantile level for the MSCI World index. The results are presented for 1-, 5- and 10-day return horizons. The
parameters are estimated using the first moving window with 2500 observations. Columns (1) are the results
for the Midas-AL model, while Columns (2) are the results for the MidasAs-AL model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses below the estimated parameters
are p-values, based on bootstrapped standard errors. For parameter ko, the null hypothesis is ko = 1. The
row Log-L reports the maximised log-likelihood value of AL distribution described in (7), while the row Hit
(%) denotes the percentage of times the VaR is exceeded.

1-day horizon

5-day horizon

10-day horizon

Model (1) (2) (1) (2) (1) (2)

0 -0.003 -0.004 -0.012 -0.016 -0.036 -0.045

ah (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
1— -1.743 -2.706 -4.265 -7.321 -1.865 -10.842

I (0.000) (0.000) (0.000) (0.000) (0.007) (0.000)
ah 1+ -0.354 0.966 9.548
Boch (0.049) (0.088) (0.000)

p 8.523 7.147 4.968 3.060 20.039 2.613

2 (0.000) (0.000) (0.000) (0.011) (0.034) (0.000)
-1.064 -1.162 -1.228 -0.959 -0.878 -1.081

v (0.000) (0.000) (0.000) (0.000) (0.013) (0.000)
Log-L 7092.82 7179.12 931.39 945.11 388.72 406.47
Hit (%) 4.833 4.750 5.000 5.000 5.000 4.583
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Table 3 Estimation of EVT-based Models at 5% quantile for the MSCI World Index

This table provides estimated parameters of two EVT-based models under the MIDAS framework for the 5%
quantile level for the MSCI World index. The results are presented for 1-, 5- and 10-day return horizons. The
parameters are estimated using the first moving window with 2500 observations. Columns (1) are the results
for the Midas-Evt model, while Columns (2) are the results for the MidasAs-Evt model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses below the estimated parameters
are p-values, based on bootstrapped standard errors. For parameter ko, the null hypothesis is ko = 1. The
row Log-L reports the maximised log-likelihood value of AL distribution described in (7), while the row Hit
(%) denotes the percentage of times the VaR is exceeded.

1-day horizon

5-day horizon

10-day horizon

Model (1) (2) (1) (2) (1) (2)

0 -0.002 -0.004 -0.011 -0.016 -0.031 -0.033

ah (0.001) (0.000) (0.003) (0.000) (0.003) (0.000)

1— -1.625 -2.726 -3.201 -7.124 -1.375 -9.564

I (0.000) (0.000) (0.000) (0.000) (0.077) (0.000)
ah 1+ 0.035 2.116 6.545
Boch (0.160) (0.031) (0.000)

p 8.608 6.073 5.230 2.777 18.960 2.557
2 (0.000) (0.000) (0.000) (0.002) (0.000) (0.027)

& 0.085 0.185 -0.156 -0.227 0.064 0.053

8 0.349 0.294 0.467 0.520 0.585 0.380
Log-L 7000.13 7166.88 931.06 943.69 386.45 404.36
Hit (%) 5.125 5.250 5.000 5.000 5.417 4.583
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Table 4 Cross-sectional Estimates of AL-based Models at the 5% quantile

This table provides the average of estimated parameters across countries of the AL-based models at the
5% quantile level. Results are reported at 1-day, 5-day and 10-day return horizons, respectively. The
parameters are estimated using the first moving window of 2500 observations. Columns (1) are the results
for the Midas-AL model, while Columns (2) are the results for the MidasAs-AL model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses display cross-sectional standard

deviation of the above parameters.

1-day horizon 5-day horizon 10-day horizon
Model (1) (2) (1) (2) (1) (2)
0 -0.006 -0.008 -0.018 -0.021 -0.031 -0.034
ash (0.003) (0.004) (0.018) (0.019) (0.038) (0.032)
Bl- -1.674 -2.296 -3.908 -5.705 -5.089 -9.298
1 ah (0.278) (0.380) (1.555) (2.541) (3.232) (5.675)
ah 4 -0.660 -1.678 -0.325
Bon (0.424) (2.144) (6.731)
. 12.606 14.234 21.294 14.901 32.993 12.892
2 (7.252) (7.097) (52.672) (24.515) (65.669) (24.757)
-0.914 -0.984 -0.959 -0.961 -1.094 -1.196
v (0.185) (0.182) (0.228) (0.218) (0.356) (0.377)
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Table 5 Cross-sectional Estimates of EVT-based Models at the 5% quantile

This table provides the average of estimated parameters across countries of the Evt-based models at the
5% quantile level. Results are reported at 1-day, 5-day and 10-day return horizons, respectively. The
parameters are estimated using the first moving window of 2500 observations. Columns (1) are the results
for the Midas-Evt model, while Columns (2) are the results for the MidasAs-Evt model, which specify the
conditional quantile in (1) and (2), respectively. The numbers in parentheses display cross-sectional standard
deviation of the above parameters.

1-day horizon 5-day horizon 10-day horizon
Model (1) (2) (1) (2) (1) (2)

0 -0.005 -0.006 -0.014 -0.018 -0.021 -0.035

osh (0.004) (0.004) (0.017) (0.016) (0.032) (0.032)

1— -1.436 -2.157 -3.432 -4.708 -4.445 -6.723

1 ah (0.288) (0.422) (1.367) (2.114) (2.526) (4.324)
ok 14 -0.450 -1.415 -0.327
Boch (0.397) (1.887) (3.800)

p 11.826 12.823 17.905 19.390 17.246 22.111
2 (7.527) (7.474) (53.094) (40.973) (49.149) (56.400)
0.067 0.074 -0.007 0.011 -0.043 0.066

£ (0.123) (0.109) (0.256) (0.208) (0.362) (0.397)
0.434 0.407 0.497 0.476 0.512 0.423

N (0.057) (0.048) (0.172) (0.138) (0.197) (0.208)
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Table 6 Results of Out-of-Sample VaR Absolute Forecasting Performance

This table summarises the performance of out-of-sample VaR forecasts across 43 international equity indices. Forecasts are
based on rolling window of 2500 observations. Panel A provides the results for the 1-day horizon, while Panels B and C
reports the results for the 5- and 10-day forecast horizons, respectively. The columns labelled Hit(%) report the percentage
of times the VaR estimates are exceeded. The next six columns display the absolute performance of VaR forecasts, based on
the unconditional coverage test (UC) of Kupiec (1995) and the dynamic quantile test (DQ) of Engle and Manganelli (2004).
For each test in column, I report the number of test rejections out of 43 indices at 5% significant level. Lower number implies

superior performance.

Hit(%) ucC DQ
Models 1% 5% 1% 5% Total 1% 5% Total

Panel A: 1-day horizon
GARCH-Fhs 1.065 5.021 3 1 4 15 20 35
GARCH-Evt 0.997 5.064 0 0 0 14 19 33
GJR-Fhs 1.063 4.966 3 5 8 11 7 18
GJR-Evt 0.996 5.054 2 4 6 4 5 9
Sav-AL 1.074 4.994 3 1 4 21 21 42
Sav-Evt 1.042 5.188 1 1 2 21 24 45
As-AL 1.069 4.908 5 4 9 12 3 15
As-Evt 1.020 5.024 0 3 3 14 5 19
Midas-AL 1.030 4.950 2 1 3 14 21 35
Midas-Evt 1.021 5.119 1 0 1 19 24 43
MidasAs-AL 1.042 4.897 4 4 8 10 4 14
MidasAs-Evt 0.998 4.975 2 4 6 11 5 16

Panel B: 5-day horizon
GARCH-Fhs 1.529 5.951 7 6 13 15 11 26
GARCH-Evt 1.513 5.920 7 10 17 13 10 23
GJR-Fhs 1.389 5.628 4 4 8 9 7 16
GJR-Evt 1.342 5.520 4 3 7 8 4 12
Sav-AL 1.195 5.030 0 0 0 22 24 46
Sav-Evt 1.267 5.104 0 0 0 16 17 33
As-AL 1.237 4.946 2 4 6 27 15 42
As-Evt 1.269 5.075 1 0 1 19 12 31
Midas-AL 1.023 4.706 1 1 2 11 5 16
Midas-Evt 1.012 4.808 0 1 1 7 4 11
MidasAs-AL 0.924 4.675 1 2 3 12 4 16
MidasAs-Evt 1.015 4.782 0 1 1 8 5 13

Panel C: 10-day horizon
GARCH-Fhs 1.514 5.692 3 2 5 11 5 16
GARCH-Evt 1.514 5.641 2 2 4 13 3 16
GJR-Fhs 1.181 5.307 0 3 3 5 5 10
GJR-Evt 1.188 5.276 1 3 4 6 5 11
Sav-AL 1.261 6.265 3 3 6 21 34 55
Sav-Evt 1.557 5.579 5 1 6 23 17 40
As-AL 1.329 6.530 3 10 13 15 33 48
As-Evt 1.659 5.548 8 1 9 20 14 34
Midas-AL 1.061 4.811 0 0 0 8 1 9
Midas-Evt 1.079 4.427 0 1 1 7 1 8
MidasAs-AL 0.918 4.913 0 0 0 8 2 10
MidasAs-Evt 1.188 4.676 1 1 2 13 2 15

32



Table 7 Results of Out-of-Sample ES Absolute Forecasting Performance

This table summarises the performance of out-of-sample ES forecasts across 43 international equity indices. Forecasts are based
on rolling window of 2500 observations. Panel A provides results for the 1-day horizon, while Panels B and C reports results for
the 5- and 10-day forecast horizons, respectively. The next six columns display the absolute performance of ES forecasts, based
on the unconditional ES test of zero discrepancy (UES1) of McNeil and Frey (2000), the unconditional (UES2) and conditional
ES (CES) tests of Du and Escanciano (2017), the multi-VaR test of Kratz et al. (2018). For each test in column, I report the

number of test rejections out of 43 indices at 5% significant level. Lower number implies superior performance.

UES1 UES2 CES
Models 1% 5% Total 1% 5% Total 1% 5%  Total MultiVaR
Panel A: 1-day horizon
GARCH-Fhs 1 1 2 2 1 3 16 35 51 1
GARCH-Evt 0 0 0 1 1 2 16 33 49 2
GJR-Fhs 1 0 1 1 3 4 7 12 19 4
GJR-Evt 2 1 3 3 2 5) 8 12 20 4
Sav-AL 0 1 1 4 0 4 22 42 64 3
Sav-Evt 1 1 2 4 1 5) 23 41 64 )
As-AL 1 2 3 8 3 11 11 15 26 4
As-Evt 1 2 3 6 4 10 11 8 19 4
Midas-AL 0 1 1 5 0 5 25 40 65 3
Midas-Evt 1 0 1 4 0 4 20 41 61 3
Midas-AL 0 2 2 4 2 6 11 10 21 1
Midas-Evt 1 2 3 3 2 5 10 10 20 3
Panel B: 5-day horizon horizon
GARCH-Fhs 1 1 2 3 4 7 1 4 5 8
GARCH-Evt 1 0 1 4 5 9 0 4 4 9
GJR-Fhs 3 2 5 3 3 6 1 4 5 7
GJR-Evt 2 2 4 0 2 2 1 2 3 )
Sav-AL 4 1 ) 2 0 2 22 34 56 2
Sav-Evt 0 0 0 0 0 0 7 28 35 2
As-AL 3 3 6 13 0 13 15 13 28 3
As-Fvt 2 0 2 3 0 3 11 14 25 4
Midas-AL 0 0 0 1 0 1 5 8 13 1
Midas-Evt 0 0 0 0 0 0 4 4 8 1
Midas-AL 1 0 1 2 1 3 4 5 9 3
Midas-Evt 1 2 3 2 1 3 3 4 7 1
Panel C: 10-day horizon horizon
GARCH-Fhs 1 0 1 0 3 3 2 2 4 6
GARCH-Evt 1 0 1 0 3 3 3 2 5 4
GJR-Fhs 1 0 1 1 1 2 2 4 6 3
GJR-Evt 0 0 0 2 1 3 2 3 5 3
Sav-AL 3 2 5 9 0 9 16 16 32 7
Sav-Evt 0 1 1 3 2 ) 12 13 25 6
As-AL 4 6 10 17 2 19 11 13 24 8
As-Evt 0 1 1 3 2 5 9 10 19 8
Midas-AL 0 1 1 1 0 1 4 4 8 1
Midas-Evt 0 0 0 4 1 ) 2 2 4 1
Midas-AL 0 2 2 0 1 1 3 2 ) 1
Midas-Evt 0 3 3 6 2 8 3 3 6 1
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Appendix A. ONLINE APPENDIX
A.1. List of Index and Forecasting Models

Table A.1 List of VaR and ES Forecasting Models

This table summarizes the competing forecasting models for VaR and ES under consideration.

Abbreviation

Description

Benchmark Models

GARCH-Fhs

GARCH-Evt

GJR-Fhs

GJR-Evt

Sav-AL

Sav-Evt

As-AL

As-Evt

VaR and ES are extracted from the GARCH model of Bollerslev (1987),
assuming a SGE distribution (Theodossiou, 2015) for daily returns. Em-
pirical distribution is approximated using filter historical simulation with
10,000 trials.

VaR and ES are extracted from the GARCH model of Bollerslev (1987),
assuming a SGE distribution (Theodossiou, 2015) for daily returns. Empir-
ical distribution is approximated by combining filter historical simulation
and EVT with 10,000 trials.

VaR and ES are extracted from the GJR-GARCH model of Glosten et al.
(1993), assuming a SGE distribution (Theodossiou, 2015) for daily returns.
Empirical distribution is approximated using filter historical simulation with
10,000 trials.

VaR and ES are extracted from the GJR-GARCH model of Glosten et al.
(1993), assuming a SGE distribution (Theodossiou, 2015) for daily returns.
Empirical distribution is approximated by combining filter historical simu-
lation and EVT with 10,000 trials.

VaR and ES are jointly estimated using maximum likelihood of AL den-
sity. VaR follows symmetric absolute value specification in (15), while ES
dynamic follows specification in (8).

Conditional quantile at threshold level of 7.5% is estimated using CAViaR
model with symmetric absolute value specification in (15). VaR and ES are
jointly computed using the results of McNeil and Frey (2000).

VaR and ES are jointly estimated using maximum likelihood of AL den-
sity. VaR follows asymmetric slope specification in (16), while ES dynamic
follows specification in (8).

Conditional quantile at threshold level of 7.5% is estimated using CAViaR
model with asymmetric slope specification in (16). VaR and ES are jointly
computed using the results of McNeil and Frey (2000).

New Models

Midas-AL

Midas-Evt

MidasAs-AL

MidasAs-Evt

VaR and ES are jointly estimated using maximum likelihood of AL density.
VaR follows MIDAS-based symmetric absolute value specification in (1),
while ES dynamic follows specification in (8).

Conditional quantile at threshold level of 7.5% is estimated using MIDAS
quantile regression with symmetric absolute value specification in (1). VaR
and ES are jointly computed using the results of McNeil and Frey (2000).
VaR and ES are jointly estimated using maximum likelihood of AL density.
VaR follows MIDAS-based asymmetric slope specification in (2), while ES
dynamic follows specification in (8).

Conditional quantile at threshold level of 7.5% is estimated using MIDAS
quantile regression with asymmetric slope specification in (2). VaR and ES
are jointly computed using the results of McNeil and Frey (2000).
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Table A.2 List of Country Index and Sources

Country Source
World World Portfolio MSCI

Developed Markets Australia, Austria, Belgium, Canada, FTSE

Denmark, Finland, France, Germany,

The Netherlands, Hongkong, Ireland,

Israel, Italia, Japan, South Korea, New

Zealand, Norway, Portugal, Singapore,

Spain, Sweden, Switzerland, United

Kingdom, United States
Emerging Markets Brazil, Chile, China, Czech Republic, S&P /IFCI

Hungary, India, Indonesia, Malaysia,
Mexico, Pakistan, Peru, Philippines,
Poland, Russia, South Africa, Taiwan,
Thailand, Turkey
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Table A.4 Model Confidence Set - Different Market Regimes

This table reports the results of the 5% Model Confidence Set (MCS) for different market regimes at
the 1% and 5% quantile levels for 1-, 5- and 10-day forecast horizons, respectively. The entry in each
column presents the number of times out of 43 indices, that the model in row is excluded from the 5%
MCS. Lg denotes the quantile loss function of (20) and Lrz¢ is the FZG loss function of Fissler et al.
(2015) given in (21). The range statistic in (22) is used to the equivalence test of the MCS. Lower
values corresponds to superior performance.

1-day horizon 5-day horizon 10-day horizon
1% 5% 1% 5% 1% 5%

Lo Lgs Lg Lgs Lg Lgs Lg Lgs Lo Lgs Lo Lgs
Panel A: 02/08/2000 - 31/07/2008 (Pre-crisis Subsample)

GARCH-Fhs 6 6 6 6 6 7 2 2 20 18 4 5
GARCH-Evt 7 6 3 3 3 4 1 1 20 18 4 )
GJR-Fhs 1 1 0 0 11 10 3 3 32 30 9 11
GJR-Evt 2 2 0 0 10 10 3 3 33 31 10 11
Sav-AL 14 14 10 10 17 17 4 4 32 32 11 12
Sav-Evt 15 15 9 9 13 14 3 4 22 21 7 8
As-AL ) ) 3 3 14 14 ) 5 33 32 10 12
As-Evt 3 4 2 2 13 13 4 4 31 30 8 12
Midas-AL 13 13 9 9 11 12 6 7 18 18 8 9
Midas-Evt 13 13 7 6 14 15 1 1 24 23 6 7
MidasAs-AL 7 7 ) 5 5 6 3 3 13 13 5 6
MidasAs-Evt 4 4 1 1 7 7 1 1 24 25 4 4

Panel B: 01/08/2008 - 31/12/2009 (Crisis Subsample)

GARCH-Fhs 3 3 2 2 ) ) 1 1 10 11 2 2
GARCH-Evt 4 4 3 4 5) ) 1 1 9 9 2 2
GJR-Fhs 2 2 1 1 4 4 2 1 12 13 2 2
GJR-Evt 2 3 1 1 4 4 2 2 12 13 2 2
Sav-AL 5 5 2 2 20 19 6 6 15 16 4 4
Sav-Evt ) ) 4 4 19 18 8 8 11 12 4 4
As-AL 2 3 2 2 11 11 6 6 15 17 4 3
As-Evt 4 ) 1 1 8 7 6 6 10 12 2 2
Midas-AL 3 3 3 3 11 12 1 1 11 11 4 4
Midas-Evt 4 4 3 4 13 13 4 4 11 12 2 2
MidasAs-AL 2 2 1 1 3 3 2 2 3 3 2 2
MidasAs-Evt 4 ) 3 3 7 7 1 1 8 9 2 2

Panel C: 01/01/2010 - 31/12/2017 (Crisis Subsample)

GARCH-Fhs 2 3 11 11 7 7 2 2 5) 8 3 1
GARCH-Evt 2 2 12 13 7 7 2 2 5 6 3 1
GJR-Fhs 0 0 2 3 5 5 3 3 15 15 3 1
GJR-Evt 3 3 4 4 5 ) 3 3 15 15 3 1
Sav-AL 7 7 19 19 18 17 ) 6 34 33 6 6
Sav-Evt 4 4 17 17 11 11 4 4 21 28 6 4
As-AL 4 4 2 3 17 16 7 7 33 33 8 6
As-Evt 2 2 5 5 11 11 3 3 24 31 4 4
Midas-AL 6 6 18 18 10 10 5 6 15 15 7 )
Midas-Evt 6 6 16 16 11 11 1 1 15 14 0 0
MidasAs-AL 3 3 2 3 1 2 2 2 2 2 2 0
MidasAs-Evt 1 2 5 ) 9 9 1 1 11 17 1 0
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Table A.13 Model Confidence Set - Alternative Bootstrapping Methods

This table reports the results of the 5% Model Confidence Set (MCS) at the 1% and 5% quantile levels
for 1-, 5- and 10-day forecast horizons, respectively. The entry in each column presents the number of
times out of 43 indices, that the model in row is excluded from the 5% MCS. L denotes the quantile
loss function of (20) and Lpz¢ is the FZG loss function of Fissler et al. (2015) given in (21). The
range statistic in (22) is used to the equivalence test of the MCS. The test statistic is constructed using
alternative bootstrapping methods. Lower values corresponds to superior performance.

1-day horizon 5-day horizon 10-day horizon
1% 5% 1% 5% 1% 5%
Lo Lgs Lg Lgs Lg Lgs Lqg Lgs Lo Lgs Lo Lgs

Panel A: Use of stationary bootstrapping

GARCH-Fhs 7 6 3 3 0 0 0 0 2 3 1 1
GARCH-Evt 5 5 4 4 0 0 0 0 2 3 1 1
GJR-Fhs 2 2 1 1 1 1 0 0 3 4 1 1
GJR-Evt 3 3 1 1 1 1 0 0 3 4 1 1
Sav-AL 10 10 16 19 6 6 5 5 10 13 5 8
Sav-Evt 8 8 13 14 5 5 3 3 3 11 3 5
As-AL 3 3 1 1 3 3 4 4 10 10 4 5
As-Evt 3 3 0 0 1 1 2 2 4 13 1 6
Midas-AL 6 7 15 15 0 0 1 1 3 4 0 0
Midas-Evt 8 8 14 15 1 1 0 0 1 5 0 0
MidasAs-AL 1 1 0 0 0 1 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 0 0 0 0 2 6 0 0
Panel B: Block bootstrapping of length 2
GARCH-Fhs 6 6 3 3 0 1 0 0 2 2 1 1
GARCH-Evt 5 5 4 4 0 1 0 0 2 2 1 1
GJR-Fhs 1 1 1 1 1 1 0 0 3 3 1 1
GJR-Evt 3 3 1 1 1 1 0 0 3 3 1 1
Sav-AL 9 10 18 18 5 3 5 4 11 12 6 4
Sav-Evt 8 8 13 13 3 3 2 3 3 7 3 7
As-AL 3 3 1 1 2 3 3 3 11 10 4 5
As-Evt 3 3 0 0 1 2 2 2 5 12 1 6
Midas-AL 5 6 16 16 0 1 1 1 3 3 0 0
Midas-Evt 8 8 14 15 1 1 0 0 1 4 0 0
MidasAs-AL 1 1 0 0 0 0 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 0 1 0 0 2 4 0 0
Panel C: Block bootstrapping of length 6
GARCH-Fhs 6 6 3 3 1 0 0 0 2 2 1 1
GARCH-Evt 5 5 4 4 1 0 0 0 2 2 1 1
GJR-Fhs 1 1 1 1 2 1 0 0 2 2 1 1
GJR-Evt 3 3 1 1 2 1 0 0 2 2 1 1
Sav-AL 7 7 14 14 3 3 4 3 11 11 4 5
Sav-Evt 8 7 13 14 3 3 1 1 4 9 1 4
As-AL 3 3 1 1 2 1 1 1 10 11 3 3
As-Evt 3 3 0 0 1 1 0 0 3 11 1 4
Midas-AL 6 6 12 13 1 0 0 0 2 2 0 0
Midas-Evt 7 6 12 12 2 1 0 0 1 3 0 0
MidasAs-AL 1 1 0 0 0 0 0 0 0 0 0 0
MidasAs-Evt 3 3 0 0 1 0 0 0 1 3 0 0
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