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Abstract

Belief functions, or normalized totally monotone capacities, are used in decision
modelling to represent partial information and subjective judgements. In the paper,
we propose a model of preferences among belief functions, which allows for smooth
indifference curves and better separation of tastes and beliefs, than the Choquet inte-
gral. In our model, a generalised average is used instead of maximums and minimums.
Thus, familiar methods from decision analysis under risk can be applied for studying
decision maker’s tastes.

1 Introduction

Belief functions introduced by Dempster [5] and Shafer [14] provide a convenient method
for modelling partial or imprecise information as well as subjective judgements. For ex-
ample, suppose that there is a probability m(B) of receiving a message that the true
state belongs to B. Then the probability of A containing the true state is at least
f(A) =

∑
B⊆Am(B). Here f is a set function possessing weaker properties than a prob-

ability measure. Indeed, f may not be additive, i.e. f(A1 ∪ A2) > f(A1) + f(A2) for
some disjoint A1 and A2. It is possible, when there exists B, such that B ⊆ A1 ∪A2 and
m(B) > 0, but B is a subset of neither A1 nor A2. Function f is called a belief function
or a lower probability.

Consider an example of partial information, the Ellsberg paradox [6]. Here the decision
maker gets different prizes depending on the color of the ball randomly drawn from an
urn. The urn contains 30 red balls and 60 black and yellow balls, the later in unknown
proportion. Possible bets and corresponding prizes are given by the table.

R B Y

a $100 0 0
b 0 $100 0
a′ $100 0 $100
b′ 0 $100 $100

In this example, there are three possible sets of outcomes, namely {0}, {100}, and
{0, 100}. When the decision maker evaluates bet a, he has complete information about
chances to win. This is reflected in that all probability is assigned to singletons, namely
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ma(100) = 1/3,1 ma(0) = 2/3, and ma({0, 100}) = 0. In this case, the corresponding
belief function fa is a probability measure. To the contrary, for bet b there is a chance
mb(0) = 1/3 of receiving nothing (when the drawn ball is red) and a chance mb({0, 100}) =
2/3 of getting 0 or $100. The later is an example of partial information: probability 2/3
can not be divided between 0 and $100, because the proportion of black to yellow balls is
unknown. Corresponding belief function fb is not additive. We summarize the chances in
the next two tables.

0 100 {0,100}
ma 2/3 1/3 0
mb 1/3 0 2/3
ma′ 0 1/3 2/3
mb′ 1/3 2/3 0

0 100 {0,100}
fa 2/3 1/3 1
fb 1/3 0 1
fa′ 0 1/3 1
fb′ 1/3 2/3 1

While in this example we used belief functions to model partial information, they can
also represent subjective judgements about possibilities of different outcomes. Indeed,
belief functions are possibly better known in economics as a special case of nonadditive
probabilities, or normalized capacities, that can be derived from decision maker’s prefer-
ences over acts and reflect subjective beliefs about the unknown.

Such decision models also explain how nonadditive probabilities are used by the deci-
sion maker in evaluating decisions. For example, a model axiomatized by Schmeidler [13] is
based on the idea of integration with respect to a non-additive set function. In particular,
applying such (Choquet) integral for evaluation of bet a we get2

V (a) = ma(0)u(0) +ma(100)u(100) +ma({0, 100}) min{u(0), u(100)}, (1)

where u is a vNM utility function. Assuming u(0) = 0 and u(100) = 1, we get V (a) = 1/3,
the expected utility of a. However, the value of bet b is only 0, because most of the
probability mass, 2/3, is multiplied by min{u(0), u(100)} = 0. This shows a pessimistic
attitude incorporated in such evaluation. That is, if with probability m(B) the true
outcome is in B, then the decision maker acts as if with probability m(B) he obtains the
worst outcome in B. If the decision maker actually values b higher, we would have to
admit that he has subjective judgement mb(100) > 0. If at the same time he reveals that
his lower estimate of observing black ball is still 0, we would have a contradiction. This
happens because such form of evaluation is not flexible enough to encompass explicitly
different attitudes other than extreme pessimism, thus pushing attitudes inside beliefs.

The problem is solved in the literature (see, for example, [8]) by replacing m(B)u∗
by m(B)v(u∗, u

∗), where u∗ and u∗ are the minimal and the maximal utility levels in B
respectively. For example, when v(u∗, u

∗) = αu∗ + (1−α)u∗, then 0 ≤ α ≤ 1 is called the
pessimism index. An α < 1 allows for both V (b) > 0 and mb(100) = 0.

On the other hand, it seems possible that intermediate outcomes also influence the
evaluation of B. Suppose that some black and yellow balls are replaced by the equal
number of green balls. In case of choosing b and drawing a green ball, the decision maker
wins 0 < x < 100. According to the models from the previous paragraph, the value of b
does not change, when x is changing. Indeed, assuming increasing u and omitting zero
terms,

V (b) = mb({0, x, 100})v(0, 1),

1Abusing notation, we write ma(100) instead ma({100}).
2Using the representation of the Choquet integral as an average of minimums (see [7]).
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which does not depend on x. However, some individuals may find bet b more attractive,
when the value of x is higher. Also the existence of intermediate prizes in real-world
lotteries suggests that such prizes may have value for buyers. This paper aims at studying
such attitude.

We assume that decision maker’s evaluation of B is better captured by m(B)Φ(B),
where Φ(B) is a quasi-arithmetic mean3 of utilities of elements of B. In other words,

Φ(B) = φ−1

 1

nB

∑
y∈B

φ[u(y)]

 ,

where φ is an increasing function and nB is the number of elements in B.
Note that under risk, i.e. when m > 0 only for singletons, the model reduces to

expected utility, because Φ({y}) = u(y).
Function φ represents decision maker’s tastes for situations of complete ignorance lim-

ited to B. The more concave is φ, the closer Φ(B) approaches u∗, representing a pessimistic
attitude when facing unknown chances. To the contrary, convex φ represents optimistic
attitude, pushing Φ(B) closer to u∗. In fact, we use here a familiar mechanism from
decision analysis under risk.

In particular, the value of bet b in the last example is

V (b) = mb({0, x, 100})Φ({0, x, 100}),

where

Φ({0, x, 100}) = φ−1
[

1

3
φ(0) +

1

3
φ(u(x)) +

1

3
φ(1)

]
.

The more concave is φ, the closer Φ({0, x, 100}) is to 0. Also note that Φ({0, x, 100}) is
monotone in x.

In the next section we derive the decision-making criterion from preferences among
belief functions. That is, we assume belief functions to be given and do not derive them
from preferences among acts. In particular, such framework is suitable for situations,
in which the information is partial and objective. Thus, this paper also belongs to the
literature on exogenous ambiguity (see, for example, [2]).

2 Model

Suppose X is the set of lotteries over some set of consequences. We refer to elements of
X as outcomes. Let A be an algebra of subsets of X containing all finite subsets.

A mapping f : A → [0, 1] is a belief function on A, when f(∅) = 0, f(X) = 1, and
f is monotone at all orders (for details see [4]). For example, monotonicity at order 2 is
convexity, i.e. f(A1 ∪A2) ≥ f(A1) + f(A2)− f(A1 ∩A2).

Let F be the set of belief functions on A concentrated on a finite subset, i.e. f(Df ) = 1
for some finite Df . Note that F is a mixture space, where λf + (1− λ)g is interpreted as
a lottery over two belief functions. We assume decision maker’s preference relation on F .

Note that each belief function in F can be represented as a convex combination of
elementary belief functions eB ∈ F , where B ∈ A, eB(A) = 1 if A ⊇ B and eB(A) = 0
otherwise. Indeed, each belief function f ∈ F possess a Moebius inverse that is a mapping

3Quasi-arithmetic mean (or Kolmogorov mean) was axiomatically characterized by Kolmogorov [11].
In economics, it was used, for example, for evaluation of decision trees [9].
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m : A → [0, 1] such that m(A) > 0 only for a finite number of subsets A, m(∅) = 0,∑
B∈Am(B) = 1, and f(A) =

∑
B⊆Am(B). We can rewrite the last equation,

f(A) =
∑
B∈A

m(B)eB(A),

or simply f =
∑

B∈Am(B)eB. If V is a linear utility function on F , then

V (f) =
∑
B∈A

m(B)V (eB). (2)

An elementary belief function eB represents the situation of complete ignorance limited
to B. In other words, the decision maker is sure that the true outcome belongs to B, but
nothing more. In order to specify V (eB) in equation (2), additional assumptions should
be made about decision maker’s evaluation of such situations. For example, Jaffray [8]
assumes that V (eB) depends only on the worst and the best outcomes in B4. To the
contrary, we suppose that V (eB) satisfies the following equation

V (eB) = φ−1

(
1

nB

∑
x∈B

φ[u(x)]

)

where φ is a continuous increasing function defined on the values of vNM utility function
u, and nB is the number of elements in B. We make here a standard assumption of
independence of risk attitudes and ambiguity attitudes. In other words, first decision
maker’s risk preferences result in a particular list of vNM utilities for B, which are then
averaged in a subjective scale φ.

To derive such criterion from decision maker’s preferences on F , we make the following
assumptions. First, we assume that decision maker’s preferences on F satisfy axioms of
linear utility theory. Second, we assume reduction of a compound lottery5, i.e.

λe{x} + (1− λ)e{y} ∼ e{λx+(1−λ)y}

for each x and y in X. This allows us to define a linear utility function on X6. Third, we
assume that set X is rich, i.e. for each x ∈ X there are countably many distinct outcomes
in X that are indifferent to x.

Finally, we introduce a set of assumptions concerning decision maker’s preferences
among eB, B ∈ A. In what follows, for A and B in A we write A � B instead of eA � eB.
If x ∈ A and y ∈ X, we denote Ax(y) the set constructed from A by replacing x by y.

Axiom 1 (Monotonicity). If y < x, then Ax(y) < A.
That is, replacing one of the possible outcomes by a weakly preferred one does not

make the situation of complete ignorance worse.
Axiom 2 (Set Betweenness). If A < B and A ∩B = ∅, then A < A ∪B < B.
A failure of Set Betweenness, say A ∪B ≺ B, implies that adding better outcomes to

B makes it less attractive. This may be true, if the decision maker is averse to the size of
the set of possible outcomes.

4According to the natural ordering of x ∈ X induced by decision maker’s preferences among e{x}.
5Recall that X is the set of lotteries.
6If V is a linear utility function on F , then u defined by u(x) = V (e{x}) is a linear utility function on

X.
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Axiom 3 (Set Continuity). For any x ∈ A and y, z ∈ X sets {0 ≤ λ ≤ 1 :
Ax(λy + (1− λ)z) < A} and {0 ≤ λ ≤ 1 : Ax(λy + (1− λ)z) 4 A} are closed.

We call τA ∈ X a risky equivalent of A ∈ A, if {τA} ∼ A. In the proof of the theorem
we show that for some λ the lottery λx∗+ (1−λ)x∗ is a risky equivalent of a set A, where
x∗ and x∗ are the worst and the best outcomes in A. Thus, for a finite A a risky equivalent
always exists. We use this in the following axiom.

Axiom 4 (Partitioning). If x1, . . . , x2n ∈ X, then

{x1, . . . , x2n} ∼ {τ{x1,...,xn}, τ{xn+1,...,x2n}}.

Partitioning implies that the evaluation of {x1, . . . , x2n} can be done in three steps.
That is, the evaluation of {x1, . . . , xn}, {xn+1, . . . , x2n}, and the resulting two-element
set of risky equivalents. Such reduction seems reasonable, especially when 2n is large.
However, this assumption may be a subject of experimental testing.

Now we are ready to state an existence theorem.
Theorem 1. There exists a utility function V on F such that

V (f) =
∑
B∈A

m(B)φ−1

(
1

nB

∑
x∈B

φ[u(x)]

)
,

where u is a linear utility function on X and φ is a continuous strictly increasing function
defined on the values of u. Such V is unique up to a positive linear transformation. Given
that V is fixed, u is unique and φ is unique up to a positive linear transformation.

It is straightforward to show that the assumptions (with the exception of richness of X)
are also necessary for the representation. The proof of the theorem is given in section 4.

3 Discussion

Let us return to the original Ellsberg paradox. In our model, the value of a bet a is given
by the formula

V (a) = ma(0)u(0) +ma(100)u(100) +ma({0, 100})φ−1
(
1
2φ[u(0)] + 1

2φ[u(100)]
)
.

Assuming u(0) = 0 and u(100) = 1, as we did before, and also φ(0) = 0 and φ(1) = 1, we
get

V (a) = ma(100) +ma({0, 100})φ−1
(
1
2

)
.

Values of different bets are given in the following table. For comparison, we also give
values obtained from formula (1).

Our model Choquet integral

a 1
3

1
3

b 2
3φ
−1 (1

2

)
0

a′ 1
3 + 2

3φ
−1 (1

2

)
1
3

b′ 2
3

2
3
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If φ is concave between 0 and 1, then φ−1
(
1
2

)
< 1

2 , implying a � b and a′ ≺ b′. In the
literature, such preferences are linked with ambiguity aversion. If φ is convex, then the
opposite relations hold. Finally, when φ is linear, the decision maker is indifferent between
a and b, and between a′ and b′.

On the other hand, it is not possible to obtain preferences a � b and a′ � b′ just by
varying φ and holding belief functions fixed. This happens because φ only influences the
evaluation of the “ignorance” component represented by the probability mass m({0, 100}).
This component is same in b and a′, so increase in value of b due to changing the shape
of φ leads to the equal increase in value of a′. Thus, preferences a � b and a′ � b′ imply
that decision maker’s belief functions are different from ones suggested in introduction.

Our model can explain Machina’s [12] reflection example, but not the 50:51 example.
Estimation of φ can be done similarly to estimation of the vNM utility function (see,

for example, [3]). Indeed, fix x∗, x
∗ ∈ X such that x∗ ≺ x∗, and put φ[u(x∗)] = 0 and

φ[u(x∗)] = 1. Find a risky equivalent τ11 of {x∗, x∗} and put φ[u(τ11 )] = 1
2 . If τ21 and τ22 are

risky equivalents of {x∗, τ11 } and {τ11 , x∗} respectively, then φ[u(τ21 )] = 1
4 and φ[u(τ22 )] = 3

4 .
Continuing in the same fashion, we obtain an estimate of φ between u(x∗) and u(x∗) with
a possibility of doing consistency checks. In theory, risky equivalents τ11 , τ

2
1 , τ

2
2 , . . . exist

(see section 4).
If φ is smooth, then indifference curves in our model are also smooth. This rises

comparison to [10]. Analogously, a theory of comparison of ambiguity attitudes can be
developed basing on the curvature of φ.

4 Proof of the theorem

Let V be a linear utility function on F and u be defined by u(x) = V (e{x}) for each x ∈ X.
Denote by I the set of values of u. Since u is a linear utility function on X, I is an (open,
closed, half-closed, finite or infinite) real interval of positive length (omitting the trivial
case of complete indifference). Define Φ(B) = V (eB). We only have to show that there
exists a continuous strictly increasing function φ : I → R such that

Φ(B) = φ−1

(
1

nB

∑
x∈B

φ[u(x)]

)
(3)

holds for any finite B ∈ A. To do this, we first prove (3) for two-element sets and then
generalize the result to arbitrary finite sets.

Note that Φ ({x1, x2}) depends only on u(x1) and u(x2). Indeed, if u(x1) = u(y1)
and u(x2) = u(y2), then {x1, x2} ∼ {y1, y2} by Monotonicity, therefore Φ ({x1, x2}) =
Φ ({y1, y2}). Hence,

Φ ({x1, x2}) = M (u(x1), u(x2))

for some function M : I2 → R. In what follows we study properties of this function.
For each r ∈ I by richness of X there exist x 6= y such that u(x) = u(y) = r. Since

x ∼ y, Set Betweenness implies {x} ∼ {x, y}. Then

M(r, r) = M (u(x), u(y)) = V ({x, y}) = u(x) = r.

Let r1, r2, s ∈ I and r1 < r2. Take different x1, x2, y ∈ X such that u(x1) = r1, u(x2) =
r2 and u(y) = s. By Monotonicity {x1, y} ≺ {x2, y}, thus M(r1, s) < M(r2, s). Therefore,
M is strictly increasing in both variables.
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For the next step, we have to show first that for any finite B ∈ A there exists a risky
equivalent τB. Indeed, if x∗, x∗ ∈ B and x∗ < x < x∗ for all x ∈ B, then {x∗} < B < {x∗}
by Set Betweenness. We can find 0 ≤ λ ≤ 1 such that V (B) = λu(x∗) + (1 − λ)u(x∗),
therefore τB = λx∗ + (1− λ)x∗ is a risky equivalent of B.

Now we would like to prove that

M (M(r, s),M(t, k)) = M (M(r, t),M(s, k)) (4)

for arbitrary r, s, t, k ∈ I. To do this, take different x, y, z, w ∈ X such that u(x) =
r, u(y) = s etc. Since M(r, s) = u

(
τ{x,y}

)
, we have

M (M(r, s),M(t, k)) = M
(
u
(
τ{x,y}

)
, u
(
τ{z,w}

))
.

Partitioning implies that {τ{x,y}, τ{z,w}} ∼ {x, y, z, w} ∼ {τ{x,z}, τ{y,w}}, which leads to

M
(
u
(
τ{x,y}

)
, u
(
τ{z,w}

))
= M

(
u
(
τ{x,z}

)
, u
(
τ{y,w}

))
from which (4) follows.

The fact that M is continuous follows from Set Continuity.
So far we proved that M is continuous and strictly increasing in both variables, satisfies

(4) and M(r, r) = r for all r ∈ I. According to the theorem characterizing the quasi-
arithmetic mean (see [1], p. 287), M satisfies these conditions if and only if there exists a
continuous and strictly monotonic function φ : I → R with which

M(r, s) = φ−1
(
1
2φ(r) + 1

2φ(s)
)

(5)

holds for each r, s ∈ I. If φ is decreasing, then −φ is a continuous strictly increasing
function satisfying (5). Thus, we proved (3) for two-element sets.

Now we extend (3) to an arbitrary finite B ∈ A. Suppose that (3) is true for all sets
with no more than n elements, n ≥ 2, and prove (3) for a set B = {x1, . . . , xn+1}. If
y1, . . . , yn−1 are different risky equivalents of B, then by Set Betweenness

B ∼ {x1, . . . , xn+1, y1, . . . , yn−1}.

Note that there are 2n elements in the later set. By Partitioning we have

B ∼ {τ{x1,...,xn}, τ{xn+1,y1...,yn−1}}

The later set has only two elements, so

φ (Φ (B)) = 1
2φ
(
u
(
τ{x1,...,xn}

))
+ 1

2φ
(
u
(
τ{xn+1,y1...,yn−1}

))
.

Since

φ
(
u
(
τ{x1,...,xn}

))
= φ (Φ ({x1, . . . , xn})) =

1

n

n∑
i=1

φ (u(xi))

and similarly

φ
(
u
(
τ{xn+1,y1...,yn−1}

))
=

1

n
φ (u(xn+1)) +

1

n

n−1∑
i=1

φ (u(yi)) ,

we have

φ (Φ (B)) =
1

2n

n+1∑
i=1

φ (u(xi)) +
n− 1

2n
φ (Φ(B)) ,
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which implies

φ (Φ (B)) =
1

n+ 1

n+1∑
i=1

φ (u(xi)) .

The uniqueness results are straightforward. The theorem is proved.
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