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Abstract

The aim of this research is to explore the risk associated with hedging in jet fuel mar-

kets. It focuses on �nding the most e�ective proxy hedge instrument for the Singapore

spot market. Due to its particularities, this market does not exhibit the same features as

traditional �nancial markets do. In appearance it seems very related to the oil market,

but in reality it exhibits insu�cient liquidity and shows unusual volatility clustering

e�ects. This behavior has a direct impact on the hedging strategies of re�neries, airline

companies and jet fuel traders. The paper explores the econometric features of the

jet fuel price and underlines the need of fat tail distributions and volatility clustering

models. Also it examines the density forecasting capacity of various proxy hedge ins-

truments including kerosene, crude and gasoil futures. The results show that Singapore

Gasoil Futures contract is the best candidate for hedging the Singapore Jet Fuel spot

price.

Keywords: Oil distillates, Gasoil, Jet Fuel, hedging strategies, market liquidity,

market e�ciency

1. Introduction

An extensive literature covers the economy of oil markets, but less attention is given

to the oil distillates and particularly to the jet fuel market. The lack of e�ciency in

oil and middle distillates markets was pointed previously by the academic literature

(Balbás et al. (2008), Kanamura et al. (2010), Roncoroni et al. (2015)). Oil distillates

markets are by their nature dependent on the oil market behavior, but also are exposed

to speci�c risks linked to the changes in the supply/demand equilibrium for those

products. Therefore, one avenue we intend to explore in this research is the modeling

based on non-Gaussian distribution, volatility clustering and regime switching.

The main motivation however behind this study is to address the challenges faced

by a company trading illiquid re�ned products such as jet fuel and providing it with
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optimal solutions with regards to their proxy hedging. Nascimento and Powell (2008)

modeled the jet fuel price using two-factor model to allow mean-reversion in the short-

term and proposed oil future contracts for tackling the hedging problem. Adams and

Gerner (2012) investigated the e�ect of the maturity on the cross-hedging performance

of jet-fuel within an Error Correction model. They evaluated the performance of several

oil forwards contracts including WTI, Brent, Gasoil and heating oil to manage jet-fuel

spot price exposure. Their results highlight that the standard approach in the literature

to use crude oil as a cross hedge for jet fuel is not optimal for time horizons of three

months or less. By contrast, for short hedging horizons their results indicate that gasoil

forwards contracts represent the highest cross hedging e�ciency for jet-fuel spot price

exposure, while for maturities of more than three months, the predominance of gasoil

diminishes in comparison to WTI and Brent.

Clark et al. (2003) have attempted to test for the most e�ective cross hedging

instrument for the Singapore jet fuel spot market, using regression techniques. Their

research concludes that for the period February 1997 to August 2001, Heating Oil

futures contract gives best in sample results. Nevertheless, after correcting for serial

correlation , their out of sample results proved to be weak for all regression models and

ambiguous with respect to the heating oil contract.

This paper aims to enrich the scarce literature on the economics of oil distillates

and attempts to estimate a good model capturing the dynamics of jet fuel futures. In

contrast to level forecasting regression and co-integration models used in previously

mentioned papers, our research provides a di�erent approach for testing proxy-hedging

based on density forecasting. The paper is organized as follows :

� Section 2 explores the econometric features of oil middle distillates re�ned

products (including gasoil and jet fuel)

� Section 3 explains the challenges of jet fuel proxy-hedging as well as the asso-

ciated basis risk

� Section 4 assesses the density forecasting methodologies (including probability

forecasting Gneiting Test Gneiting and Ranjan (2011))

� Section 5 presents the results of the ability of more liquid traded products such

as Brent Crude and Gasoil returns to forecast density the jet fuel market

� Section 6 concludes
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2. Econometric modeling of the Singapore jet fuel and related oil distillates

The �rst part of this research is dedicated to the econometric study of the Singapore

jet fuel and related oil distillates prices. Our aim is not to �nd the "true" model that

would explain the behavior of these commodities, but to propose a benchmark from

di�erent models commonly used to describe �nancial assets. Based on the historical

time series, few models are estimated with the intention to capture volatility clustering.

Clustering in volatility is another ubiquitous feature observed in returns. Few models

from the GARCH universe allow to capture this phenomena emphasizing the various

particularities of the return series.

We explore the following models :

� Models without volatility clustering, but with non Gaussian innovations (NIG,

t-Student, Asymmetric Student)

� Models with volatility clustering and Gaussian innovations (GARCH, eGARCH,

iGARCH, GJR-GARCH, APARCH)

� Models with volatility clustering and non-Gaussian innovations

� Markov Regime Switching GARCH models

Looking forward lets consider that St the asset price at time t has the following

dynamics under the empirical measure P :

Yt = ln
St
St−1

= r + ψ
√
ht + εt (1)

Yt = ln
St
St−1

= r + ψ
√
ht +

√
ht · zt (2)

where εt has zero mean and conditional variance ht under the measure P ;zt is a

i.i.d. distributed variable ; r is the one-period risk-free rate of return and ψ the constant

unit risk premium.

2.1. Dataset presentation

As emphasized earlier, the �nal goal of this article is to assess the risk of a re�nery

or airline company that hedges its exposure to illiquid petroleum products such as jet

fuel. There are two primary futures contracts which are commonly used for jet fuel

hedging : brent crude and gasoil. These contracts serve as the primary benchmarks

across the globe. In addition, there are many other contracts (futures, crack futures,
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swaps and options) available for jet fuel hedging, most of which are tied to one of the

major, global trading hubs of Singapore, US Gulf Coast (Houston/New Orleans) and

NW Europe/ARA (Amsterdam, Rotterdam and Antwerp).

Figure 1: Evolution of the front month futures of Singapore Jet Kerosene , ICE Brent Crude, ICE Low

Sulphur Gasoil and Singapore 50ppm Gasoil (USD/bbl)

For this purpose, we consider ICE Brent Crude, ICE Low Sulphur Gasoil and Sin-

gapore 50ppm Gasoil Futures for our proxy analysis. We also consider the Singapore

Jet Kerosene (Platts) vs. Gasoil (Platts) Futures di�erential ( called Regrade), often

used in jet fuel hedging. As for the jet fuel, there are three reference futures contracts

for each geographical hub : Platts CIF NWE, USGC Jet 54 and Singapore Jet FOB.

For our analysis, we consider the jet fuel contract traded in Singapore. Figure 1 1 pre-

sents the evolution of the above mentioned front month futures contract quoted in

1. The ICE Low Sulphur Gasoil contract, quoted in USD per metric tones on the exchange, has

been converted here to USD/bbl using a scale conversion factor of 7.45 used in the industry.
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USD/barrel.

The Table 2.1 synthesizes the summary statistics over the considered dataset. ICE

brent and ICE Low Sulphur Gasoil exhibit a higher volatility compared to the other

three series. We notice that compared to the highly liquid Brent and LS Gasoil futures,

Singapore Jet Fuel/Kerosene, Singapore Gasoil and Regrade exhibit a considerably

higher kurtosis values which implies the need of heavy tailed distributions for modeling

purposes.

Underlying Mean Volatility Skewness Kurtosis

Regrade -0.003 0.287 0.803 34.157

Singapore Gasoil -0.001 0.289 -0.374 15.039

Singapore Kerosene -0.001 0.265 -0.338 22.417

ICE Brent -0.001 0.390 0.248 5.134

ICE LS gasoil -0.001 0.328 0.597 6.862

Table 1: Summary Statistics. ICE brent and ICE Low Sulphur Gasoil exhibit a higher volatility

compared to the other three series. Regrade and Singapore Kersone have a more pronounced Kurtosis.

Figures 8, 11, 14, 17 and 20 show the historical prices for Brent, LS Gasoil, Jet

Kerosene and Regrade futures for the most liquid maturities of the curve.

2.2. Generalized Hyperbolic models

A recent modeling technique introduced here permits both skewness and kurtosis in

the assets returns. Indeed, these features are not accounted for in the previous mode-

lings. Following the works of Eberlein and Prause (2002) and Barndor�-Nielsen (1977)

done on �nancial assets, we calibrate the class of Generalized Hyperbolic distributions

to our data sets. This very �exible class of distributions (Annexe 1) is able to capture

heavy tails and asymmetry. It is characterized by �ve parameters with a parameter

which permits very speci�c shapes. The four other parameters are linked in an easy

way with the �rst four moments of the distribution.

2.2.1. Distributions Fit Results

In order to add leptokurtic distribution shapes of our datasets and overpass the limi-

tations of using the classic Gaussian modeling framework, we consider the following set

of candidate distributions : t-Student, Assymetric Student and Normal Inverse Gaus-

sian (NIG), which retained our attention for their capacity to take in account heavy
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tails. The results of the statistical estimation are exhibited in the following tables. The

95% con�dence intervals are compute through bootstrap approaches. The �ttings are

compared based upon the Bayesian Information Criterion (BIC) 2. The results synthe-

sized in Tables 2.2.1, 2.2.1, 4, 2.2.1 and 2.2.1 Student and NIG distributions exhibit

the best �ts for the jet fuel returns as well as for the proxy-hedging candidates.

Gaussian Student SSTD NIG

Parameter Value Parameter Value Parameter Value Parameter Value

µ 0.000 µ -0.001 µ 0.000 µ -0.000

[0.000 0.000] [0.000 0.000] [0.000 0.000] [0.000 0.000]

σ 0.025 σ 0.026 σ 0.026 α 0.025

[0.023, 0.026] [0.024, 0.027] [0.024, 0.027] [0.023, 0.026]

ν 3.529 β 1.071 β 0.115

[3.4, 3.6] [1.061, 1.081] [0.11, 0.12 ]

ν 3.550 δ 0.676

[3.440,3.660] [ 0.442, 0.852 ]

BIC -1724.58 -1760.64 -1724.82 -1764.04

Table 2: Distribution Fitting for ICE Brent Front Month Futures returns. NIG and Student distribution exhibit

the best �ts.

2.3. Volatility models

Typical Gaussian �at volatility failed to provide with conspicuous valuations for

contingencies and also underestimated the risk measures. The dynamic volatility models

add value also for testing hedging strategies as, the traditional �at volatiles model

tend to underestimate the clustering e�ect. For this purpose we consider the GARCH-

type models. The GARCH process introduced by Bollerslev (1987) and its di�erent

variations have gained increasing prominence for modelling �nancial asset over the last

decade. The GARCH di�usion presents three particular features compared to other

modellings. First it assumes that the present conditional variances is linearly linked

to the past conditional variances and to past market squared return. Second for an

accurate calibration GARCH is greedy in term of data. Third the models transfers

through volatility pastern the risk premium of the underlings price. The classic GARCH

2. In our formalism the higher the absolute value of the BIC, the better the �t is.
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Gaussian Student SSTD NIG

Parameter Value Parameter Value Parameter Value Parameter Value

µ -0.000 µ -0.001 µ -0.001 µ 0.000

[-0.230 ,0.220] [ -0.203,0.323 ] [-0.101,0.14 ] [-0.120,0.122 ]

σ 0.021 σ 0.028 σ 0.028 α 0.021

[0.019,0.023 ] [0.024,0.033 ] [0.025, 0.032] [0.019,0.022]

ν 2.468 β 1.001 β 0.064

[2.325, 2.514 ] [0.952, 1.053 ] [0.042, 0.086 ]

ν 2.469 δ 0.349

[2.221,2.66 ] [0.247, 0.424 ]

BIC -1856.41 -1922.24 -1880.75 -1923.88

Table 3: Distribution Fitting for ICE LS Gasoil Front Month Futures daily returns. NIG and Student distri-

butions exhibit the best �ts.

Gaussian Student SSTD NIG

Parameter Value Parameter Value Parameter Value Parameter Value

µ -0.000 µ 0.000 µ -0.000 µ 0.000

[-0.210 ,0.215] [ -0.213,0.223 ] [-0.11,0.12 ] [-0.110,0.132 ]

σ 0.017 σ 0.066 σ 0.066 α 0.012

[0.014,0.023 ] [0.028,0.088 ] [0.038,0.091] [0.002,0.021]

ν 2.010 β 0.938 β -0.112

[1.968,2.13 ] [0.842,1.201 ] [-0.154,-0.049 ]

ν 2.010 δ 0.100

[1.840,1.260] [ 0.042, 0.152 ]

BIC -2011.99 -2260.43 -2192.86 -2245.14

Table 4: Distribution Fitting for Singapore Jet Fuel/Kerosene Front Month Futures daily return. Student and

NIG distributions exhibit the best �ts.

framework bring obviously signi�cant improvements in term of econometric description

compared to the classic Gaussian model. And yet Bollerslev's GARCH remains still

under an assumption of normally distributed innovations.

Further under the framework described by Bollerslev (1987), εt follows a GARCH(1,1)

process is

εt|φt−1 ∝ N(0, ht) or zt ∝ N(0, 1) (3)

ht = α0 + α1 · ε2t−1 + β1 · ht−1 (4)
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Gaussian Student SSTD NIG

Parameter Value Parameter Value Parameter Value Parameter Value

µ 0.000 µ 0.000 µ -0.000 µ 0.000

[-0.20 ,0.205] [ -0.23,0.22 ] [-0.112,0.122 ] [-0.110, 0.101 ]

σ 0.018 σ 0.082 σ 0.082 α 0.015

[0.015,0.021] [0.059,0.118] [0.041,0.128] [0.09,0.021]

ν 2.010 β 0.958 β -0.079

[1.64,2.48] [0.847,1.131] [-0.104,-0.045 ]

ν 2.010 δ 0.100

[1.740,2.460] [ 0.042, 0.152 ]

BIC -1949.60 -2151.21 -2082.55 -2141.86

Table 5: Distribution Fitting for Singapore Gasoil Front Month Futures returns. Student and NIG distributions

exhibit the best �ts.

Gaussian Student SSTD NIG

Parameter Value Parameter Value Parameter Value Parameter Value

µ -0.000 µ -0.003 µ -0.005 µ -0.001

[-0.22 ,0.205] [ -0.28,0.2 ] [-0.112, 0.122] [-0.10, 0.111]

σ 0.287 σ 0.911 σ 0.911 α 0.181

[0.265,0.312 ] [0.88,1.08] [0.85,1.02] [0.184,0.221]

ν 2.010 β 0.983 β 0.038

[1.842, 2.268 ] [0.652,1.201 ] [0.018,0.054 ]

ν 2.010 δ 0.100

[1.540,2.560] [ 0.042, 0.152 ]

BIC 128.943 -177.201 -117.776 -156.712

Table 6: Distribution Fitting for Regrade Front Month Futures returns. Student and NIG distributions exhibit

the best �ts.

where φt is the corresponding σ-algebra generated by the previous an present in-

formation ; The unconditional variance is h0 =
α0

(1−α1−β1) . GARCH model assumes that

the conditional variance is a linear function of past squared disturbances and the past

conditional variance, genuinely making ht φt-predictable.

Generalizing the above given de�nition a GARCH(p,q) follows
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ht = α0 + α1ε
2
t−1 + · · ·+ αqε

2
t−q + β1ht−1 + · · ·+ βph

2
t−p = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i

where p ≥ 0, q ≥ 0, α0 > 0, αi > 0, i=1,...,q ; βi ≥ 0, i=1,...,p. and
∑q

i=1 αi +∑p
i=1 βi < 1 3.

In order to mitigate the existence of signi�cant kurtosis and skewness e�ects assets

returns returns an extension of the GARCH model could be the introduction of non-

Gaussian (Generalized Hyperbolic) innovations, with the parametrization introduced

in the previous section :

zt ∝ GH(λ;α; β;µ; δ) or (5)

εt|φt−1 ∝ GH(λ;
α√
ht
;
β√
ht
;µ

√
ht; δ

√
ht) (6)

ht = α0 + α1 · εt−1 + β1 · ht−1 (7)

GARCH di�usion presents in term of pricing three particular features compared to

other modellings. First the GARCH derivatives prices depends of risk premium em-

bedded in the underlying asset. Second the GARCH pricing model is non-Markovian

and is an interesting alternative for markets with serial dependency. Third the GARCH

models might explain some valuation biases of out-of the money options, associated

with classic models.

Few popular variations of the GARCH model include :

� The integrated GARCH (IGARCH) model The integrated GARCH mo-

del (Engle and Bollerslev (1986)) assumes that the persistence is one. Omitted

structural breaks should be assessed before using an iGARCH model.

εt|φt−1 ∝ N(0, ht) or zt ∝ N(0, 1) (8)

ht = α0 + (1− β1) · ε2t−1 + β1 · ht−1 (9)

� The Glosten-Jagannathan-Runkle(GJR-GARCH) model introduced by

Glosten et al. (1993) adds assymetry in the volatility process :

3. For insuring the covariance stationarity of the GARCH(p,q) it is imposed that the persistence

is inferior to the unity
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ht = α0 + (α1 + c · It−1) · ε2t−1 + β1 · ht−1 (10)

where

It−1 =

0 εt−1 ≥ 0

1 εt−1 < 0

� The exponential GARCH (EGARCH) model introduced by Nelson (1991)

aims to capture asymmetric reaction of volatility to the positive and negative

information about the market. Volatility of the EGARCH model, which is mea-

sured by the conditional variance is an explicit multiplicative function of lagged

innovations.

log ht = αt +
∞∑
i=1

βig(Zt−k) (11)

where the function g is de�ned as g(Zt) = θZt + γ(|Zt| − E|Zt|), g(Zt) having
a zero mean E [g(Zt)] = 0. No restriction are imposed in this version of the

GARCH model. EGARCH can also assess whether the shocks in variance are

persistent or not.

� The Asymmetric Power GARCH model (APARCH) introduced by Ding

et al. (1993) accounts for leverage e�ect and also the fact that the sample au-

tocorrelation of absolute returns is higher than that of squared returns(Reider

(2009)).

h0.5·ζt = α0 +

q∑
i=1

αi(|εζt−i| − γi · εt−i)ζ +
p∑
i=1

βih
0.5·ζ
t−i (12)

It can be notice that equation 12 with ζ=2 and γi = 0 matches the classic

GARCH model with Gaussian innovations.

We estimated through max-likelihood method the volatility models presented above.

Table 7 exhibits the results of �tting of GARCH-type model with normal, Student and

NIG innovations for Singapore Jet Fuel daily returns. The models with NIG innova-

tion show a superior �tting performance in terms of BIC /AIC. APARCH model �ts

better than the rest of the GARCH family for all three innovation type. The APARCH

with NIG innovations and with a power factor (δ) of 0.94 exhibits the best features,

underlining the leverage e�ects in volatility.
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Model Normal STD NIG

Param. Estimate Std. Error p-value Param. Estimate Std. Error p-value Param. Estimate Std. Error p-value

GARCH

ω 0.000 0.000 0.000 ω 0.000 0.000 0.007 ω 0.000 0.000 0.001

α1 0.002 0.000 0.000 α1 0.347 0.061 0.000 α1 0.307 0.055 0.000

β1 0.994 0.000 0.000 β1 0.652 0.064 0.000 β1 0.692 0.043 0.000

ν 2.314 0.074 0.000 α -0.228 0.047 0.000

β 0.055 0.009 0.000

BIC/AIC -5.351 -5.333 -6.714 -6.690 -6.770 -6.739

eGARCH

ω -0.040 0.004 0.000 ω -0.904 0.265 0.001 ω -0.642 0.201 0.001

α1 -0.061 0.018 0.001 α1 -0.004 0.040 0.911 α1 -0.005 0.066 - 0.937

β1 0.994 0.000 0.000 β1 0.895 0.027 0.000 β1 0.907 0.026 0.000

γ1 0.033 0.013 0.011 γ1 0.558 0.057 0.000 γ1 0.886 0.259 0.001

ν 2.100 0.037 0.000 α -0.264 0.049 0.000

β 0.010 0.006 0.079

BIC/AIC -5.424 -5.399 -6.677 -6.646 -6.776 -6.740

iGARCH

ω 0.000 0.000 0.900 ω 0.000 0.000 0.000 ω 0.000 0.000 0.000

α1 0.000 0.001 0.995 α1 0.348 0.042 0.000 α1 0.308 0.039 0.000

β1 1.000 β1 β1 0.692

ν 2.313 0.040 0.000 α -0.229 0.046 0.000

β 0.055 0.008 0.000

-5.355 -5.343 -6.717 -6.698 -6.773 -6.748

gjrGARCH

ω 0.000 0.000 0.010 ω 0.000 0.000 0.071 ω 0.000 0.000 0.001

α1 0.000 0.005 1.000 α1 0.314 0.089 0.000 α1 0.274 0.066 0.000

β1 0.980 0.002 0.000 β1 0.649 0.098 0.000 β1 0.690 0.044 0.000

γ1 0.032 0.010 0.001 γ1 0.073 0.127 0.566 γ1 0.081 0.109 0.459

ν 2.318 0.097 0.000 α -0.231 0.047 0.000

β 0.055 0.009 0.000

-5.406 -5.382 -6.712 -6.681 -6.768 -6.731

APARCH

ω 0.001 0.000 0.000 ω 0.000 0.000 0.520 ω 0.003 0.005 0.573

α1 0.007 0.002 0.001 α1 1.000 0.335 0.003 α1 1.000 0.229 0.000

β1 0.991 0.000 0.000 β1 0.636 0.040 0.000 β1 0.670 0.054 0.000

γ1 1.000 0.001 0.000 γ1 0.093 0.080 0.245 γ1 0.081 0.109 0.455

δ 0.432 0.038 0.000 δ 1.646 0.319 0.000 δ 0.939 0.365 0.010

ν 2.128 0.053 0.000 α -0.302 0.049 0.000

β 0.014 0.006 0.016

-5.538 -5.507 -6.748 -6.711 -6.833 -6.790

Table 7: Fitting of GARCH-type model with normal, Student and NIG innovations for Singapore Jet Fuel daily

returns
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2.3.1. Markov Regime Switching GARCH models

Despite adding value for modeling assets with leptokurtoic behavior single regime

GARCH models, fail to capture time of a transition between between a low risk and

high risk regime. An alternative was introduced by Haas et al. (2004) with the switching

regime GARCH model detailed din the below formula. Middle distillates markets are

particularly concerned by this feature due to the variation in liquidity. Thus one vola-

tility regime can correspond to thin liquidity conditions while another to appropriate

levels of liquidity. The GARCH switching regime is speci�es as following :

ht =

α1
0 + α1

1 · ε2t−1 + β1
1 · ht−1;

α2
0 + α2

1 · ε2t−1 + β2
1 · ht−1;

(13)

The results of �tting the switching GARCH model for the underlyings studied

in this paper are exhibited in Table2.3.1. The occurrence of two distinct states with

statistically signi�cant probability of transition is con�rmed for Singapore Gasoil and

Regrade. The particularity of this two underlying is the fact that they trade on thinner

liquidity than the other three markets considered in this study. This �nding con�rms

our initial assumption and is a valuable learning when testing the risk related to proxy

hedging.

State1 State2

α01 α11 β1 α02 α12 β2 P1 P2

Regrade 0.0008 0.1677 0.3855 0.1053 0.0266 0.7489 0.8670 0.8546

Sing GO 0.0001 0.0001 0.0001 0.0001 0.0001 0.9484 0.9532 0.2853

Kerosene 0.0001 0.0423 0.0001 0.0008 0.0001 0.7934 0.9442 0.9145

Brent 0.0001 0.2862 0.5219 0.0005 0.0016 0.8411 0.9673 1.0000

LSGO 0.0001 0.0004 0.0001 0.0001 0.0863 0.7308 0.9946 0.0000

Table 8: Switching Regime GARCH models �tting for ICE Brent, ICE Low Sulphur Gasoil, Singapore

Gasoil, Jet Fuel/Kerosene and Regrade

3. Proxy hedging

In an incomplete �nancial market, it is hardly ever possible to �nd the hedging ins-

trument that perfectly mirrors a given price risk. Most of re�ners and airline companies

attempt to hedge around 80% of their jet fuel exposure (Adams and Gerner (2012)). In
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large part, they do this by purchasing futures contracts on crude oil, the feedstock for

producing jet fuel, or other oil derivative products such as heating oil, used in USA, and

gasoil in Europe. The regional prices of these commodities with jet fuel are correlated

in the long run, however in the short term, price co-movements are asynchronous. This

erratic relationship de�nes the basis risk.(Kamara and Siegel (1987) ,Ankirchner and

Imkeller (2011)), which is the �nancial risk occurred when the chosen 'proxy-hedge'

does not entirely o�set the price risk of the main underlying asset.

This is clearly seen from the 1 Month rolling correlation plot in Figure 2, which

shows that despite the 'obviously' highly correlated dynamics of the spot prices exhi-

bited earlier in Figure 1, there exists basis risk when hedging in oil markets and this is

mainly explained by product, location and time factors.

Figure 2: 1M Rolling Correlation of Front Month Futures

Another representation of the basis risk can be seen in Figure 20 which shows the

price the di�erential between Singapore Gasoil and Jet Kerosene, or the Regrade. All

this is to show that even when a proxy instrument appears to be a highly correlated

instrument, the basis risk associated with it undermines the e�ectiveness of the proxy-

hedge as it exacerbates the cash �ow volatility that the hedge is designed to reduce.

A major challenge in "proxy hedging" (Viken and Thorsrud (2014)) consists in

�nding an the proxy instrument which will minimize basis risk and hedge volatility. As

such, an Asian company willing to cover it's long jet fuel exposure has the following
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Figure 3: Singapore Regrade Futures

options :

� Jet Fuel direct hedge : sell Singapore Jet Kerosene Futures or �rst line swap

� Crude 'proxy hedge' : sell ICE Brent Crude Futures or �rst line swap

� Gasoil 'proxy hedge' : sell ICE LS Gasoil or Singapore 0.5% Gasoil Futures

� Basis risk 'slice & dice proxy hedge' : hedge jet fuel pricing compo-

nents opportunistically in case of an existing exposure to crude or gasoil (use

Brent/Gasoil Crack, Regrade or Jet Di�erential)

Now the main question which stands out, is why hedge using crude oil or gasoil

contracts when jet fuel future contracts are also available ? The answer is contract

liquidity. Figure 3 exhibits volumes of the considered dataset on a logarithmic scale.

We notice that ICE Brent Crude oil and LS Gasoil futures are signi�cantly more liquid

than the Singapore Kerosene and Gasoil 0.5% futures. If jet fuel contracts were available

at the same cost as crude oil contracts, then clearly this would be a better alternative.

As such, if an Asian airline company wants to cover its jet fuel price risk, since

the volumes exchanged on this market are thin, it might use one of the 'proxy-hedge'

options described earlier. However, choosing the right one means making a trade-o�

between liquidity and basis.
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Figure 4: ICE Brent, ICE LS Gasoil, Singapore Gasoil and Jet Fuel Futures Liquidity

The current literature focuses mainly on the risks related to level forecasting when

using a proxy-hedge, but ignores completely the density forecasting. The main issue

with proxy hedging is the fact that markets have di�erent depth. On one hand a shock

in the Brent market might not be fully re�ected in the Jet fuel market. On the other

hand a small variation in the Brent Market might generate a shock in the Jet fuel

market due to di�erence in liquidity. The basis risk of proxy hedge using both plain

or derivatives based strategies is generated also by the di�erences in the distribution

features thereby underlying the need of testing the density forecasting ability.

For testing the proxy-hedging with Brent, gasoil or regrade, a trader exposed to jet

fuels prices risk should assess the density forecasting capacity of an econometric risk

model. Thus a model estimated on Brent or Gasoil returns should be tested in terms

of density forecasting on the jet fuel prices.

4. Forecasting densities

This section describes the technique for reaching the main goal of this paper, the

testing in terms of density forecasting of proxy-hedging strategies. In a recent paper

15



Gneiting and Ranjan (2011) proposed a test that develops the weighting approach of

Amisano and Giacomini (2007) but avoids counter intuitive inferences. We use this test

for assessing the density forecasting in proxy hedging.

Gneiting's test aims to built a proper score with the respect of the above de�ni-

tion based on appropriately weighted versions of the continuous ranked probability

score(CPRS). For any density function f(y) with a cumulative distribution function

F (z) =
∫ z
−∞ f(y)dythe continuous ranked probability score is then de�ned as

CPRS(F, y) =

∫ ∞
−∞

PS(F (r), 1(y ≤ r))dr (14)

where

PS(F (r), 1(y ≤ r)) = (1(y ≤ r)− F (r))2 (15)

is the Brier probability score for the probability forecast Ft(r) =
∫ r
−∞ f(y)dy of the

event y ≤ r

The weighted probability score described by Matheson and Winkler (1976) and

Gneiting and Raftery (2007) is written as :

Sw(f, y) = −
∫ ∞
−∞

PS(F (r), 1(y ≤ r)wr(r)dr (16)

where the weighting function wr(r) taxes the forms presented in equation ?? In a

discrete form the above score can be aproximtd by assuming an equidstan discretiza-

tions of a target region with the boundaries yl, yu

Swf (f, y) =
yu − yl
I − 1

I∑
i=1

w(yi)PS(F (yi), I(y ≤ yi)) (17)

yi = yl + iyu−yl
I

The test based on the following statistic which is leveraged from the

Amisano-Giacomini test :

Zn =
E(Swf (f, y)− Swf (g, y))

ω̂n
(18)

where

Et(S
w
f (f, y) =

1

n− k + 1

m+n−k∑
t=m

S(ft+k, yt+k) (19)

Et(S
w
f (g, y) =

1

n− k + 1

m+n−k∑
t=m

S(gt+k, yt+k) (20)

and ω̂n is an estimate of var(
√
n(Et(S

w
f (f, y)− Et(S

w
g (g, y))
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5. Backtesting results of proxy-hedging

Based on the speci�cations of the Gneitting test presented above we built a testing

process for the proxy hedging strategies. The full dataset contains the daily prices of Jet-

fuel, ICE Brent, ICE gasoil or Singapore Gasoil between 01/01/2014 and 01/03/2017.

The testing process has the following steps :

1. A model (M1) is estimated on the daily returns of the proxy (ICE Brent, ICE

gasoil or Singapore Gasoil). The data set contains a (out of sample) the �rst

250 consecutive days of the considered full sample.

2. A model (M2) is estimated on the daily returns of the jet fuel prices. The

data set (in sample) contains a window of 250 consecutive days, which starts

immediately after the end of the out of sample dataset.

3. The Gneitting test score is computed for comparing the model M1 estimated

out of sample on the proxy with model M2 estimated on the actual in sample

jet fuel returns

4. The out of sample window is rolled over with one day and same is for the in

sample window. Steps 1-3 are repeated until the end of the full sample

5. A time series of Gneitting test scores is built.

The previous sections underlined that NIG distribution exhibits good �tting fea-

tures for all the underlying studied in this article. Therefore we will consider the NIG

model for both out of sample and in sample. Therefore the test score will assess the

power of the density �tted on the proxy to forecast the jet fuel distribution feature.

Figure 5 shows the evolution of the testing Score for NIG model, where as the

proxy hedge is realized with Singapore Gasoil. Until July 2016 the score rejects at 99%

con�dence level the null hypothesis that the model �tted on the proxy is similar to

the model �tted on the jet fuel and in fact the proxy provides with better results.

After July 2016 the score enter in the con�dence region thereby not rejecting the null

hypothesis. Towards 2017 the NIG model �tted on proxy losses gradually from its

forecasting capacity but remains close to the con�dence region

Figure 6 shows the evolution of the testing Score for NIG model, where as the proxy

hedge is realized with ICE Low Sulphur Gasoil. Until July 2016 the score does not

rejects at 99% con�dence level the null hypothesis that the model �tted on the proxy

17



Figure 5: Evolution of the Gneitting Test Score for NIG model with Singapore Gasoil

is similar to the model �tted on the jet fuel. After July 2016 the NIG model �tted on

Low Sulphur Gasoil proxy has lost its forecasting capacity and became inappropriate.

Figure 7 shows the evolution of the testing Score for NIG model, where as the proxy

hedge is realized with ICE Brent. Until July 2016 the score does not rejects at 99%

con�dence level the null hypothesis that the model �tted on the proxy is similar to the

model �tted on the jet fuel. After July 2016 the NIG model �tted on Brent returns has

lost massively its forecasting capacity and became inappropriate.

6. Conclusions

This paper explores the topic of proxy hedging in middle distillates market with a

focus on jet fuel. The research addresses the problem of a re�nery or an airline company

that hedges its jet fuel price risk with proxy instruments including Brent futures and

gasoil futures. The problem is studied in two steps : �rst the various econometric models

with fat tails and volatility clustering are explored in relation with the returns of daily

time series and second the proxy hedging is test based on density forecasts methods.

The results from the �rst part show that NIG distribution, APARCH speci�cations
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Figure 6: Evolution of the Gneitting Test Score for NIG model and ICE LS Gasoil

of the volatility dynamics capture in an appropriate manner the behavior of jet fuel,

brent and gasoil prices. Also GARCH switching regimes model are a good candidate

for modeling the markets that might exhibit thin liquidity.

The second part show that the NIG model �tted on the Singapore Gasoil as proxy

has the best density forecasting abilities from the considered choices.

A future direction for our research is the consideration of transaction costs in the

Gneiting Test score function, as trading future contracts usually involves brokerage

commisions and liquidity across di�erent product maturities. This leads to adressing

the problem of dimensionality, as it would be necessary to consider a technique such

as approximate dynamic programming to produce a hedging policy that re�ects such

costs.
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Figure 7: Evolution of the Gneitting Test Score for NIG model with ICE Brent
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Annexe

This brief review of the Generalized Hyperbolic distribution functions focuses on

the Normal Inverse Gaussian function. The generic form of a Generalized Hyperbolic

model is :

f(x;λ;χ;ψ;µ;σ; γ) =
(
√
ψχ)−λψλ(ψ + γ2

σ2 )
0.5−λ

√
2πσKλ(

√
ψχ)

×
Kλ−0.5(

√
(χ+ (x−µ)2

σ2 )(ψ + γ2

σ2 ))e
γ(x−µ)
σ2

(
√
(χ+ (x−µ)2

σ2 )(ψ + γ2

σ2 ))λ−0.5
,

where Kλ(x) is the modi�ed Bessel function of the third kind :

Kλ(x) =
1

2

∫ ∞
0

yλ−1e−
x
2
(y+y−1)dy. (21)

With properly chosen parameters, this distribution reduces to the following distri-

butions :

1. λ = 1 : hyperbolic distribution

2. λ = −1/2 : NIG distribution

3. λ = 1 and ξ → 0 : Normal distribution

4. λ = 1 and ξ → 1 : Symmetric and asymmetric Laplace distribution

5. λ = 1 and χ→ ±ξ : Inverse Gaussian distribution

6. λ = 1 and |χ| → 1 : Exponential distribution

7. −∞ < λ < −2 : Asymmetric Student

8. −∞ < λ < −2 and β = 0 : Symmetric Student

9. γ = 0 and 0 < λ <∞ : Asymmetric Normal Gamma distribution

Among the Generalized Hyperbolic family, the Normal Inverse Gaussian distribu-

tion can be obtained by setting λ = −1
2
in the previous equation. Thus :

f(x;−1

2
;χ;ψ;µ;σ; γ) =

χ
1
2 (ψ + γ2

σ2 )

πσe
√
−ψχ ×

K1(
√
(χ+ (x−µ)2

σ2 )(ψ + γ2

σ2 ))e
γ(x−µ)
σ2

(
√
(χ+ (x−µ)2

σ2 )(ψ + γ2

σ2 ))
.
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By changing the variables of the previous equation c = 1
σ2 ; β = γ

σ2 ; δ =
√

χ
c
; α =√

ψ
σ2 + β2 we obtain a more popular representation, and the density of the NIG(α,β,µ,

δ) distribution is equal to :

fNIG(x;α; β;µ; δ) =
δα · exp(δγ + β(x− µ))
π ·

√
δ2 + (x− µ)2

K1(α
√
δ2 + (x− µ)2).

The moments (mean, variance, skewness and kurtosis) are respectively equal to :

E(X) = µ+ δ
β

γ

V(X) = δ
α2

γ3

S(X) = 3
β

α ·
√
δγ

E(X) = 3 + 3(1 + 4(
β

α
)2)

1

δγ

Thus, the NIG distribution allows for behavior characterized by heavy tails and

strong asymmetries, depending on the parameters α, β and δ.
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Figure 8: ICE Brent Crude Futures

Figure 9: Colume Ice Brent Futures

Figure 10: Open Interest Ice Brent Futures
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Figure 11: ICE Low Sulphur Gasoil Futures

Figure 12: Volume ICE Low Sulphur Gasoil Fu-

tures Futures

Figure 13: Open Interest ICE Low Sulphur Gasoil

Futures
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Figure 14: Singapore Gasoil 0.5% (Platts) Futures

Figure 15: Volume Singapore Gasoil 0.5% (Platts)

Futures

Figure 16: Open Interest Singapore Gasoil 0.5%

(Platts)Futures
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Figure 17: Singapore Jet Kerosene (Platts) Futures

Figure 18: Volume Singapore Jet Kerosene

(Platts) Futures

Figure 19: Open Interest Singapore Jet Kerosene

(Platts)Futures
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Figure 20: Singapore Regrade Futures

Figure 21: Volume Singapore Regrade Futures

Figure 22: Open Interest Singapore Regrade Fu-

tures
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