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Abstract 

This paper is aimed at presenting a multiobjective portfolio framework which 

considers the intrinsic uncertainty of investment decisions under different risk 

assumptions (i.e. mean-absolute deviation and mean-semi-absolute deviation), where 

the expected return and risk of the assets are treated as interval numbers. Some realistic 

interval constraints such the maximal and minimal fractions of the capital allocated to 

the various assets are also considered. New surrogate problems are obtained for the 

mean-absolute deviation risk measure based on the concept of necessary subtraction 

between interval numbers. A proposal for obtaining the efficient portfolio solutions is 

also suggested, which allows considering three types of investment strategies, i.e., a 

conservative strategy, an aggressive strategy and a combined strategy. A sample of ten 

years (about 3600 trading days) of data regarding a diversified portfolio of stocks has 

been collected which allows illustrating the applicability of the approach proposed. 

Results illustrate the trade-off between risk and return, being also consistent with the 

type of strategy followed by the investor, i.e. more aggressive strategies toward risk 

lead to lower risk levels and more aggressive strategies toward return lead to higher 

return and vice-versa. Additionally, we conclude that less prone to risk investors might 

find the formulation based on the mean-absolute necessary deviation more attractive 

since it allows reaching the highest return values in the worst case scenarios. Finally, 

results indicate that if a conservative strategy is followed the portfolios obtained are 

always more diversified.  

Keywords: Portfolio theory, Multiobjective interval linear portfolio problems, mean-

absolute deviation-risk models  



1. Introduction 

In 1952, Markowitz (1952) paved the grounds for modern portfolio theory, with 

the application of variance or standard deviation as a measure of risk.  

The classical Markowitz formulation is valid as long as the expected return is 

multivariate normally distributed and the investor is risk averter and prefers lower risk 

(Papahristodoulou and Dotzauer, 2004). This approach has drawn many criticisms, 

since it might allow for the choice of a portfolio that might be outperformed and 

because of its complexity (the objective function is quadratic), being very hard to find 

an optimal portfolio when the number of assets is large. Additionally, even if an optimal 

solution is obtained, it might be hard to implement it in practice, eventually leading the 

investor to assign his/her budget to a large number of small blocks of shares, which 

might be unprofitable, given the transaction costs. Finally, the standard Markowitz’ 

formulation, considers variance as a measure of risk volatility, disregarding the fact that 

quite often the investor’s stance regarding risk is not consistent with symmetry or 

normal distribution. A small loss might be enough to make an investor not prone to risk 

very unhappy and the opposite might also be true. The semi-variance was also proposed 

by Markowitz (1968), providing a better risk assessment than the measure originally 

considered, but involving a higher computational burden and disclosing the same type 

of information. 

The Markowitz classical model should thus be considered as an approximation to 

rather complex problems that investors have to face. Real-world portfolios are made up 

of a large number of assets, possibly with very small holdings for some of them, 

minimum lot sizes, complexity of management, or policy of the asset management 

companies (Cesarone et al., 2011).  

The classical Markowitz model has evolved and some variations therefrom have 

been comprehensively studied in the past decade, particularly from the computational 

standpoint. Several attempts have been made to build less complex portfolio selection 

problems by linearizing the quadratic objective function (see e.g. Sharpe (1971); 

Speranza (1993); Mansini et al. (2003)). Usually the approximation or the 

decomposition of the covariance matrix are considered (Mitra et al. (2003)). Alternative 

risk measures for portfolio planning have also been used (for an overview on distinct 

risk estimation measures usually accounted for in the framework of portfolio theory see 

Biglova et al. (2004); Ortobelli et al. (2005)).  



Although a prevalent number of publications exists regarding risk measures and 

mean-risk models, portfolio decisions may also be based on the investor’s expectations 

regarding return, risk and liquidity characteristics of the assets (Gupta et al., 2014). 

Investors may be interested in grasping how different assets may be combined in order 

to obtain the aimed return, risk and liquidity.  

Conventional multiobjective models usually address practical portfolio selection 

problems in which all coefficients and parameters are a priori given. Nevertheless, in 

real-world portfolio problems, information regarding the asset returns, risk and liquidity 

is often incomplete, the markets in which the assets are traded exhibit volatility and 

experts’ opinions might vary. Therefore, besides multiple issues of evaluation, these 

problems inherently involve inexactness and uncertainty issues. Uncertainty handling 

can be dealt with in various ways, namely by means of stochastic, fuzzy and interval 

programming techniques. In the stochastic approach the coefficients are treated as 

random variables with known probability distributions. In the fuzzy approach, the 

constraints and objective functions are regarded as fuzzy sets with known membership 

functions. However, it is not always easy for the decision-maker (DM) to specify these 

probability distributions and membership functions. Thus it would be more realistic to 

define portfolio parameters in terms of intervals rather than crisp numbers. In the 

interval approach it is considered that the uncertain values are perturbed simultaneously 

and independently within known fixed bounds, being therefore intuitively preferred by 

the DM in practice (Oliveira and Antunes, 2007). In this framework, several authors 

propose portfolio selection models based on the traditional semi-absolute deviation 

measure of risk, by taking the uncertain returns of assets in a financial market as 

intervals (see e.g. Lai et al. (2002); Bhattacharyya et al. (2011); Zhang (2016)). The 

minimax regret approach based on a regret function has also been considered in a 

portfolio selection problem in which the prices of the securities are treated as interval 

variables (Giove et al., 2006). Multi-period portfolio selection models with interval 

coefficients have also been suggested (see e.g. Liu et al. (2013); Zhang (2016); Liu et al. 

(2016)). Other combined approaches have also been proposed which present a new 

portfolio selection model, where the average return of every asset is considered as an 

interval number, and the risk of every asset is treated by a probabilistic measure (Jin, 

2016)).   



Usually the portfolio selection models herein reviewed were applied assuming 

that an investor decides to invest his/her wealth among a small number of assets, 

considering the explicit uncertainty of the model mainly in its objective functions. 

Therefore, we suggest a methodological approach to assist investors regarding portfolio 

decisions, which allows reducing the complexity of the problem from a computational 

standpoint even when the consideration of uncertainty involves both the objective 

functions and the constraints of the model. 

Two multiobjective portfolio optimization models with interval coefficients are 

proposed with different risk assumptions, where interval constraints regarding the 

maximal fractions of the capital allocated to the various assets will also be considered to 

guarantee portfolio diversification. New surrogate problems are then obtained for the 

mean-absolute deviation risk measure based on the concept of necessary subtraction 

between interval numbers.  Finally, in order to obtain efficient portfolio solutions, three 

types of investment strategies will be explored, i.e., a conservative strategy, an 

aggressive strategy and a combined strategy.  

The remaining of this paper is organized as follows. In Section 2 we briefly 

describe the methodological approach used. Section 3 describes the main underpinning 

assumptions regarding data collection. In Section 4 a discussion of the illustrative 

results obtained is presented. Finally, some conclusions are drawn and future work 

developments are suggested. 

 

2. Methodology and assumptions 

Let us assume that investors allocate their wealth among n assets offering random 

rate of returns and that the portfolio selection problem considered is based on a single 

period model of investment.  

In the next sections the assumptions used in the construction of the models 

suggested are presented, the objective functions and the constraints considered are also 

described which allow obtaining two different modelling approaches according to 

different risk measures. Finally, three different mathematical models are obtained for 

each of these models according to different investor’s standpoints. 

 

 



 

 

2.1.  Objective functions 

A portfolio is composed of two or more assets represented by an ordered n-tuple 

Θ = (x1, x2, . . . , xn), where xi is the proportion of the total funds invested in the i-th 

asset. 

Return 

The asset’s return or the rate of return is defined for a given period t as: 

     
                   

       
                                    (1) 

where pit is the closing price of the i-th asset during the period t, pit−1 is the closing price 

during the period t−1, dit is the dividend of the i-th asset during the period t. 

The expected value (E[·])  of the rate of return, Ri (i = 1, 2, . . . , n), is a random 

variable taking finitely many values can also be approximated by the average derived 

from historical data, i.e.,  

         
 

 
    
 
   .                               (2) 

In general, the arithmetic mean of past returns is considered as a proxy of 

expected return of an asset and thus it is obtained as a certain value. However, in real 

world problems, asset prices and the returns obtained therefrom are subject to a set of 

variables whose behavior cannot be simply anticipated on past events (Gupta et al., 

2014). Moreover, the use of arithmetic mean of historical returns as the expected return, 

has two major shortcomings. On one hand, if historical data for a long period of time 

are considered, the influence of the earlier historical data is the same as that of recent 

past data. Nevertheless, recent past data of an asset might be more significant than the 

earlier historical data. On the other hand, if the historical data of an asset are not 

suitable, due to lack of information, the estimation of the statistical parameters would 

not be adequate. Having this in mind, in order to account for the uncertainty handling, 

the expected return of an asset should be rather considered as an interval number. 

Therefore, the return of the portfolio is expressed as: 

    
    

    
 
    =     

  
         

  
      ,                                  (3) 

where    
    

   is the interval valued return with. 



 

 

 

Risk 

Usually, an investor would rather prefer to have the portfolio return as large as 

possible and at the same time with minimum possible dispersion/variability. Therefore, 

Markowitz (1952) suggested the variance to quantify portfolio risk.  

Although, variance can be used as a risk measure, one of its main limitations is 

that it penalizes extreme upside (gains) and downside (losses) deviations from the 

expected return. Thus, when probability distributions of the asset returns are 

asymmetric, variance becomes a less appropriate measure of portfolio risk 

(Chunhachinda, et al. 1997). In fact, the selected portfolio may sacrifice higher expected 

returns. 

Markowitz (1968) also suggested the semi-variance which is a downside risk 

measure, i.e., a measure which only considers the negative deviations from a reference 

return level. Its advantage over variance is that it does not consider gains as risk; thus, it 

is a suitable measure of risk when investors are concerned about portfolio 

underperformance rather than over performance. Nevertheless, the implementation of 

mean-semi-variance portfolio selection models is computationally much more complex 

as compared to mean-variance portfolio selection models. 

In 1994 JP Morgan suggested another risk measure also known as Value-at-Risk 

(see Longerstaey and Spencer (1996)), which entails several drawbacks since the Value-

at-Risk optimization problem is not convex and it does not allow expressing the benefits 

of diversification (Cesarone et al., 2011). Other important risk measure is Conditional 

Value-at-Risk also called Mean Excess Loss, Mean Shortfall, or Tail VaR (Rockafellar 

and Uryasev, 2000).  

A surrogate measure for risk is the maximization of the minimum return 

(maximum loss) demanded by the investor (Young, 1998): 

Max min       
 
   , t = 1, ..., T.                                                    (4) 

Young (1998) argued that for given distributions, in particular when data is log-

normally distributed, or skewed, this type of formulation might be rather preferable. 

This author also advocated its use when the portfolio optimization problem involves a 

large number of decision variables (including integer variables), or if the investor’s is 



more risk averse than it is implied by the classical minimization of variance. However, 

in spite of its simplicity this formulation might lead to an infeasible solution if all assets 

yield a negative return.  

A different approach to replace the Markowitz classic formulation is to use the 

absolute deviation risk function (Konno and Yamazaki, 1991; Mansini and Speranza, 

1999; Rudolf et al. 1999). The absolute deviation of a random variable is the expected 

absolute value of the difference between the random variable and its mean. The 

portfolio risk measured as absolute deviation can be approximated as follows: 

 

 
             

 
     

   .                             (5) 

Since the expected returns of assets are considered as interval numbers, the 

expected absolute deviation of return of the portfolio below the expected return is an 

interval number too:  

 

 
           

    
     

 
     

                                                  (6) 

Konno and Yamazaki (1991) concluded that if the return is multivariate normally 

distributed, the minimization of the absolute deviation provides similar results to the 

classical Markowitz formulation. Rudolf et al. (1999) argue that the minimization of the 

absolute deviation is equivalent to expected utility maximization under risk aversion. 

This formulation has several advantages since it does not require the estimation of the 

variance-covariance matrix and the solution is obtainable even if all possible assets 

yield a negative return. This model is also flexible enough to be reformulated as an 

Integer Linear Programming (ILP) problem incorporating other important features (e.g. 

fixed and variable costs associated with the purchase of assets) and decision variables 

(Mansini and Speranza, 1999), being easily implemented even when a large number of 

assets is considered. 

Following the work of Konno and Yamazaki (1991), Speranza (1993) proposed 

the semi-absolute deviation as an alternative measure to quantify risk, and concluded 

that considering the risk function as a linear combination of the mean-semi-absolute 

deviations (i.e., mean deviations below and above the portfolio return), a model 

equivalent to the mean-absolute deviation model can be obtained, whenever the sum of 

the coefficients of the linear combination is positive. Finally, they have also showed that 

this model is equivalent to the Markowitz model, if the returns are normally distributed. 



The expected semi-absolute deviation of return of the portfolio below the 

expected return is given by: 

 
          

 
                

 
     

  
 
     

 (7) 

The mean-semi-absolute deviation model reduces the number of constraints by 

half in comparison with the mean-absolute deviation model, since it requires T 

linearizing constraints while the mean-absolute deviation model requires 2T linearizing 

constraints. 

If the expected returns of assets are given as interval numbers, the expected semi-

absolute deviation of return of the portfolio below the expected return is an interval 

number too: 
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2.2. Constraints 

Capital budget constraint 

Since xi is the proportion of the total funds invested, the capital budget constraint 

on the assets is expressed as: 

    
 
   =1.                                                                                        (9) 

Maximum proportion of capital that can be invested 

The maximum proportion of capital allocated to the assets in the portfolio depend 

upon several factors. Since investors differ in their interpretation of the available 

information, in order to achieve a sufficient diversification of investments we consider 

the upper bound given within interval,    
    

  , obtaining the following interval 

constraint: 

       
    

    
 
   , i = 1, …, n,                                                                        

(10) 

where yi is a binary variable indicating whether the i-th asset is contained in the 

portfolio. 

Maximum number of assets held in a portfolio  



Investors may differ regarding the number of assets they want to manage in a 

portfolio. Therefore, we consider that the maximum number of assets given within an 

interval range,        ,  and obtain the following constraint: 

            
   .                                                                                              

(11) 

No short selling is allowed 

Short selling occurs when an investor actually does not own an asset but he/she 

establishes a market position by selling the asset in anticipation that the price of that 

asset will fall. In this case, the investor is said to have taken a short position. 

Mathematically, this situation implies that the number of assets owned by the investor is 

negative. 

In portfolio mathematical modelling, short selling is not allowed, i.e. the values of 

xi are not negative; hence,  

xi ≥ 0 for all i (i = 1, 2, . . . , n).                                                                            (12) 

 

2.3. Multiobjective Portfolio Selection Problems Using Interval Numbers 

Two interval portfolio optimization problems are obtained considering different 

risk assumptions. 

Mean-absolute deviation model 

Min 
 

 
           

    
     

 
     

    

Max     
  

         
  

      , 

s.t.    
 
   =1, 
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    , i = 1, …, n, 

xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n.                                                               (13) 



If we consider the necessary subtraction operator (for the properties of necessary 

subtraction see Inuiguchi and Kume (1991)), the absolute necessary deviation of the 

return obtained from the expected interval returns in each period is: 
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since    
   

 
       

   
 
       is allways verified. 

The necessary regret interval can be obtained as: 
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where the deviational variables,   
  ,    

   ,   
   and   

   are defined in such a way that: 
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   ,                                                       (16) 
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   ,                                                        (17) 

where   
    

    ,   
    

     and the “ ” and “ ” operators are the minimum and 

maximum values, respectively. 

By considering the upper bound of the necessary deviation of the return of each 

portfolio from its corresponding interval expected returns, the smallest deviation is 

guaranteed (Inuiguchi and Kume, 1991; Oliveira and Antunes, 2017) and problem (13) 

has the following surrogate problem: 

Min  
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     , t=1, 2, …, T, 

  
     

     , t=1, 2, …, T, 

      
U
, 

xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n, 

0      1, 

                                                                                       (18) 

 

 

Mean-semi-absolute deviation model 

Min   
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    , i = 1, …, n, 

xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n.                                                                                             

(19) 

 

Problem (19) has the following surrogate: 
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       , t=1, 2, …, T, 

xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n, 

  
  ≥ 0, t=1, 2, …, T, 



  
  ≥ 0, t=1, 2, …, T.                           (20) 

 

2.4. Solution method  

Problems (18) and (20) can be transformed into multiobjective mixed integer 

interval linear programming problems. The weighted-sum method can thus be used to 

convert the multiobjective problems into single interval objective optimization problems 

(see e.g. Gupta et al. (2014)). We suggest distinct optimization models for portfolio 

selection regarding three types of investment strategies: conservative, aggressive and 

combined strategies.  

 

2.4.1. Conservative strategy 

The investor aiming for a conservative strategy is more risk averse, being more 

concerned with risk than return. 

Mean-absolute deviation model (with a pessimistic stance regarding risk) 

Max       
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U
, 

xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n, 

0      1, 

                                                                                                          (21) 

 

Mean-semi-absolute deviation model (with a pessimistic stance regarding risk) 

Max (    
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       , t=1, 2, …, T, 

xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n, 

  
  ≥ 0, t=1, 2, …, T.                           (22) 

 

 

 

2.4.2. Aggressive strategy 

The investor aiming for an aggressive strategy is more prone to risk, being more 

concerned with return than risk. 

Mean-absolute deviation model (with a pessimistic stance regarding risk) 

Max (     
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U
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xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n, 

0      1, 

                                                                                                          (23) 

 

Mean-semi-absolute deviation model (with an optimistic stance regarding risk) 
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xi ≥ 0, i = 1, …, n, 

yi {0,1}, i = 1, …, n, 

  
  ≥ 0, t=1, 2, …, T.                                                                                                

(24) 

 

2.4.3.  Combined strategy 

A combined strategy allows for the investor to choose a more balanced approach 

regarding risk and return. 

Mean-absolute deviation model (with a pessimistic stance regarding risk) 
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0      1, 

               ,                                                                                        (25) 

where ,   and   , i = 1, ...n, are indexes of pessimism ranging in a scale from 0 

(agressive strategy) to 1 (conservative strategy). 

 

Mean-semi-absolute deviation model 



Max  (    
  

        
 

 
   

   
   + (1-) (    

  
        

 

 
   

   
    

s.t.    
 
   =1, 

                 
   , 

       
        

    
       , i = 1, …, n, 

  
          

   
       , t=1, 2, …, T, 

  
          

   
       , t=1, 2, …, T, 

xi ≥ 0, i = 1, …, n, 
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  ≥ 0, t=1, 2, …, T.                                                                                            (26) 

 

 

3. Data and Assumptions 

A sample of ten complete years (about 3600 trading days) regarding a portfolio of 

diversified stocks from different countries and distinct activity sectors has been 

considered, using Bloomberg as a source of information. The stocks contemplated for 

the European countries are Portugal Telecom SGPS SA (PT)
1
, Energias de Portugal, 

SA (EDP), Deutsche Telekom AG (DT), Bayerische Motoren Werke AG (BMW) and 

Adidas AG. For the United States of America we have collected data for Microsoft 

Corporation, Apple Incorporation, McDonald’s Corporation, The Coca-cola company 

and Pfizer Incorporation. Regarding the Emergent markets, we have assessed Petrobras, 

Vale SA, America Movil SAB, Sify Technologies Limited and Taiwan semiconductor 

manufacturing company. 

The selection of stocks for the portfolio analyzed has been done by considering 

several levels of diversification. Therefore, stocks from 15 companies have been 

carefully chosen from distinct geographical locations (7 countries and 4 continents), 

facing different "development stages" (10 developed and 5 emerging countries), and 

belonging to differentiated activity sectors and industries (see Tables 1 and 2). 

Table 1: Industry classification of the stocks selected.  

Industry Classification Companies 

                                                           
1
 On May 29, 2015, the shareholders decided to change the name to PHAROL, SGPS S.A. 



Communication Services PT 

Utilities - Regulated EDP 

Communication Services DT 

Auto Manufacturers - Major BMW 

Textile-Apparel Footwear & 

accessories 
Adidas 

Application Software Microsoft 

Computer Hardware Apple 

Restaurants McDonalds 

Beverages - Non-Alcoholic Coca-Cola 

Drug Manufacturers Pfizer 

Oil & Gas - Integrated Petrobras 

Metals & Mining Vale 

Communication Services America 

Communication Services Sify 

Semiconductors Taiwan 

Table 2: Covariance Matrix. 

 

The assets’ returns have been obtained through the computation of the daily 

logarithmic returns: 

                      
  

    
.                                                                 (27) 

Out of the various factors influencing the rate of change in expected return of the 

assets, the periods under which the returns are obtained might have a huge impact on 

the portfolio return. Therefore, returns obtained during the periods of economic crises 

and during periods of economic recuperation should be considered separately, since 

many investors may plan their asset allocation considering the return of the assets 

according to bull and bear scenarios. The usual delimitation of the periods of crises is 

based on remarkable events, as the Lehman Brothers collapse, for instance. Specifically, 

we consider the period between an early stage of the pre-crisis boom until a late stage of 

the boom, i.e. from 2001 (the starting year of our data) until 8
th

 of August 2007 (the eve 

Companies PT EDP DT BMW Adidas Microsoft Apple
McDonald

s
Coca-Cola Pfizer Petrobras Vale America Sify Taiwan

PT 1

EDP 0,355328 1

DT 0,399601 0,290327 1

BMW 0,329878 0,313495 0,436421 1

Adidas 0,262390 0,275277 0,342802 0,500040 1

Microsoft 0,157448 0,184613 0,344188 0,340842 0,282786 1

Apple 0,138446 0,109123 0,219309 0,242284 0,209032 0,479262 1

McDonalds 0,155646 0,143568 0,197158 0,285755 0,213723 0,351208 0,272031 1

Coca-Cola 0,150945 0,146243 0,226163 0,244648 0,182934 0,421602 0,286638 0,341024 1

Pfizer 0,169203 0,169098 0,261595 0,287335 0,229526 0,421951 0,271174 0,342997 0,404562 1

Petrobras 0,206171 0,233812 0,231939 0,309524 0,242749 0,285464 0,258415 0,213090 0,232772 0,265068 1

Vale 0,190548 0,210904 0,182029 0,286247 0,260905 0,274313 0,286622 0,216261 0,226315 0,240606 0,606503 1

America 0,188983 0,194312 0,261892 0,327771 0,258780 0,349734 0,320524 0,271020 0,293091 0,291124 0,418344 0,418062 1

Sify 0,127993 0,146724 0,183956 0,199308 0,173747 0,212633 0,210300 0,127042 0,130316 0,147408 0,210081 0,198388 0,215855 1

Taiwan 0,130818 0,154492 0,063762 0,128628 0,144204 0,030031 0,047132 0,032455 -0,019781 0,024966 0,106917 0,108258 0,106691 0,153537 1

Covariance Matrix



of the Lehman Brothers collapse), the crisis period as the time horizon between 9
th

 of 

August 2007 and 31
th 

of
 
December 2009 and from then on until the latest years of our 

data (4
th

 of April 2013) a “recovery” stage (Milesi-Ferretti and Tille, 2011; Mobarek et 

al., 2014). 

The average returns obtained for the economic periods of pre-crisis, crisis and 

post crises are, respectively:      
 

  
     

  
   ,      

 

  
     

   
     and     

 
 

  
     

   
     .       

  From these values it was possible to obtain the upper and lower bounds 

considered for the interval objective function coefficients for the return to be 

maximized, i.e.   
                    and   

                    (see Figure 1). 

 

Figure 1. Ranges of variation of log return and log average return of the stocks selected.  

 

The number of assets that the investor wants to manage in a portfolio is given 

within               (Gupta et al., 2014). Finally, the maximum proportion of 

capital allocated to the assets in the portfolio is considered within the interval 

   
    

            , in order to obtain a certain level of investments’ 

diversification. 

 

4. Results and discussion 

Table 3 provides information regarding the efficient Portfolios selected according 

to distinct risk profiles (other scenarios could be explored) considering the semi-mean-

absolute deviation model. 



 

Table 3: Proportion of assets in the obtained portfolios using different strategies  

with semi-mean-absolute deviation model.  

 Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5 

Strategy Conservative Aggressive Conservative Aggressive Combined 

Companies             All indexes = 1/2 

PT 0.000 0.000 0.000 0.000 0.00 

EDP 0.000 0.000 0.200 0.288 0.00 

DT 0.000 0.000 0.000 0.000 0.00 

BMW 0.000 0.500 0.000 0.000 0.00 

Adidas 0.000 0.000 0.000 0.097 0.00 

Microsoft 0.000 0.000 0.200 0.000 0.00 

Apple 0.200 0.000 0.000 0.000 0.15 

McDonalds 0.200 0.000 0.200 0.000 0.32 

Coca-Cola 0.200 0.000 0.200 0.262 0.00 

Pfizer 0.000 0.000 0.000 0.149 0.00 

Petrobras 0.000 0.000 0.000 0.000 0.00 

Vale 0.200 0.000 0.000 0.157 0.28 

America 0.000 0.000 0.200 0.000 0.00 

Sify 0.000 0.000 0.000 0.047 0.00 

Taiwan 0.200 0.500 0.000 0.000 0.25 

 

Portfolios 1 and 3 are obtained considering a more conservative strategy attaining 

the lower bound of maximum return and the upper bound of minimum risk, 

respectively, in a worst case scenario; while Portfolios 2 and 4 are more aggressive 

since they seek to compute the upper bound of the maximum return and the lower 

bound of the minimum risk in a best case scenario, respectively. 

Regarding Portfolio 1 it is possible to conclude that the proportions of the selected 

assets are distributed evenly among a diversified set of stocks belonging to different 

industries (see Table 1). This fact is highlighted by the covariance between 

Taiwan/Coca-Cola (-0.02) which has negative values, followed by near zero covariance 

values between Taiwan and the remaining companies, in particular: Microsoft (0.02); 

McDonalds (0.03) and Vale (0.11) – see Table 2.  

An aggressive strategy aiming for return only, leads to the choice of two blue-chip 

stocks, but with lower diversification level (see Portfolio 2). 



A regulated utility is always selected when the investor is strictly seeking risk 

minimization (Portfolios 3 and 4). From the Portfolios analyzed the highest 

diversification is obtained when a more aggressive strategy towards risk is assumed (see 

Portfolio 4). While Portfolio 3 leads to a uniform distribution of the proportion of assets 

held, Portfolio 4 assigns a higher weight to EDP (regulated utility) and Coca-cola 

(which present a beta substantially lower than one).   

The combined strategy considers a balanced approach by assigning a pessimistic 

index of 0.5 to all the objective functions and to the threshold of the interval constraints. 

The portfolio selected corresponds to the highest proportion of investment allocated to 

stocks which are also present in the portfolios obtained with the conservative strategy. 

The expected trade-off between risk and return are highlighted in Figure 2, 

illustrating that portfolios with higher risk also obtain higher return. These results are 

also consistent with the type of strategy followed by the investor with more aggressive 

strategies toward risk leading to lower risk and more aggressive strategies toward return 

leading to higher return and vice-versa. 

 

Figure 2. Risk vs. Return in the semi-mean-absolute model.  

Table 4 presents information regarding the efficient Portfolios selected according 

to distinct risk profiles (once more, other scenarios could also be explored) considering 

the absolute deviation model. 

Table 4: Proportion of assets in the obtained portfolios using different strategies  

with mean-absolute deviation model. 

 

Portfolio 6 Portfolio 7 Portfolio 8 Portfolio 9 Portfolio 10 

Strategy Conservative Aggressive Conservative Aggressive Combined 

Companies             All indexes = 1/2 
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PT 0,000 0,000 0,000 0,000 0,00 

EDP 0,000 0,000 0,200 0,164 0,00 

DT 0,000 0,000 0,000 0,120 0,00 

BMW 0,000 0,500 0,000 0,000 0,00 

Adidas 0,000 0,000 0,000 0,000 0,00 

Microsoft 0,000 0,000 0,200 0,038 0,00 

Apple 0,200 0,000 0,000 0,000 0,07 

McDonalds 0,200 0,000 0,200 0,100 0,35 

Coca-Cola 0,200 0,000 0,200 0,500 0,35 

Pfizer 0,000 0,000 0,000 0,000 0,00 

Petrobras 0,000 0,000 0,000 0,000 0,00 

Vale 0,200 0,000 0,000 0,000 0,05 

America 0,000 0,000 0,200 0,078 0,18 

Sify 0,000 0,000 0,000 0,000 0,00 

Taiwan 0,200 0,500 0,000 0,000 0,00 

Analogously to the previous model formulation, Portfolios 6 and 8 are obtained 

considering a more conservative strategy attaining the lower bound of maximum return 

and the upper bound of minimum risk, respectively, under a worst case scenario; while 

Portfolios 7 and 9 are more aggressive since they seek to compute the upper bound of 

the maximum return and the lower bound of the minimum risk under a best case 

scenario, respectively. 

From the analysis of Table 3 it can be concluded that Portfolios 6-8 are identical 

to the ones obtained with the previous model. When the maximization of return takes 

place the results are always similar even with less stringent constraints regarding the 

portfolio diversification. However, if risk minimization is considered the results are 

only similar under a worst case scenario (because the feasible region becomes too tight). 

Finally, it can be established that with this last model formulation the values of the 

lower bound of return (i.e. in a worst case scenario) are always higher even with a 

combined strategy (see Figure 3). 

Overall, results show that by following a conservative strategy the Portfolios 

selected are always diversified, leading to the management of 5 stocks (the upper limit 

considered in this scenario). 

 



 

Figure 3. Risk vs. Return in the mean-absolute model.  

 

Both model formulations have also been used by considering the average log 

return of the stocks assessed. The results obtained regarding the Portfolio composition 

are provided in Tables 5 and 6. 

Table 5: Proportion of assets in the obtained portfolios using different strategies  

with semi-mean-absolute deviation model. 

 

Portfolio 11 Portfolio 12 Portfolio 13 Portfolio 14 Portfolio 15 

Strategy Conservative Aggressive Conservative Aggressive Combined 

Companies            
All indexes = 

1/2 

PT 0,000 0,000 0,000 0,000 0,00 

EDP 0,000 0,000 0,200 0,223 0,00 

DT 0,000 0,000 0,200 0,130 0,00 

BMW 0,200 0,500 0,000 0,000 0,00 

Adidas 0,200 0,000 0,000 0,000 0,13 

Microsoft 0,000 0,000 0,000 0,000 0,00 

Apple 0,000 0,000 0,000 0,000 0,10 

McDonalds 0,200 0,000 0,000 0,000 0,18 

Coca-Cola 0,000 0,000 0,200 0,500 0,00 

Pfizer 0,000 0,000 0,200 0,000 0,00 

Petrobras 0,000 0,000 0,000 0,000 0,00 

Vale 0,200 0,000 0,200 0,071 0,25 

America 0,000 0,000 0,000 0,075 0,00 

Sify 0,000 0,000 0,000 0,001 0,00 

Taiwan 0,200 0,500 0,000 0,000 0,35 

 

Table 6: Proportion of assets in the obtained portfolios using different strategies with  

mean-absolute deviation model. 

 

Portfolio 16 Portfolio 17 Portfolio 18 Portfolio 19 Portfolio 20 
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Strategy Conservative Aggressive Conservative Aggressive Combined 

Companies            
All indexes = 

1/2 

PT 0,000 0,000 0,000 0,000 0,00 

EDP 0,000 0,000 0,200 0,221 0,00 

DT 0,000 0,000 0,200 0,130 0,00 

BMW 0,200 0,500 0,000 0,000 0,00 

Adidas 0,200 0,000 0,000 0,000 0,00 

Microsoft 0,000 0,000 0,000 0,000 0,00 

Apple 0,000 0,000 0,000 0,000 0,06 

McDonalds 0,200 0,000 0,000 0,000 0,35 

Coca-Cola 0,000 0,000 0,200 0,500 0,30 

Pfizer 0,000 0,000 0,200 0,000 0,00 

Petrobras 0,000 0,000 0,000 0,000 0,00 

Vale 0,200 0,000 0,200 0,069 0,18 

America 0,000 0,000 0,000 0,080 0,12 

Sify 0,000 0,000 0,000 0,000 0,00 

Taiwan 0,200 0,500 0,000 0,000 0,00 

 

Since the objective functions are no longer interval valued, a more conservative 

strategy corresponds to the adoption of the model with the most constrained version of 

the feasible region (see Portfolios 11, 13, 16 and 18), i.e., using the worst case scenario; 

while more aggressive portfolios are obtained with the widest version of the feasible 

region, i.e. using a best case scenario (see Portfolios 12, 14, 17 and 19). 

For the same reasons previously mentioned, Portfolios 11-13 are identical to 

Portfolios 16-18. However, it was possible to conclude that once more, with the mean-

absolute modelling formulation the lower bounds of the returns of the portfolios 

selected are higher than those attained with the mean-semi-absolute formulation (in 

particular, when we contrast Portfolios 14 and 15 with Portfolios 19 and 20), leading us 

to conclude that the investor less prone to risk, i.e. which aims to obtain the highest 

returns considering the worst case scenario should select the absolute modelling 

approach. 

 

5. Conclusions 

A new modelling framework based on portfolio theory was proposed which 

accounts for the uncertainty handling by means of interval coefficients both in the 

objective functions and in the constraints. A new solution method for obtaining efficient 

portfolios has also been suggested which allows considering three types of investment 



strategies, i.e. a conservative strategy, an aggressive strategy and a combined strategy. 

This study contributes to an understanding of the implications of investment decisions 

under different risk assumption (i.e. mean-absolute deviation and mean-semi-absolute 

deviation). Our results show that under a conservative strategy (i.e. with higher risk 

concerns) the portfolios obtained are always more diversified, leading to less extreme 

asset allocations. Furthermore, our findings highlight the trade-off between risk and 

return, indicating that depending on the strategy followed by the investor, higher risk 

also generates higher return and vice-versa. Future work is currently under way in order 

to encompass other axes of evaluation, such as liquidity, considering multi-period 

portfolio selection models which allow exploring the investor’s preferences in distinct 

economic cycles. 
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