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Abstract

We study how stochasticity in the evolution of agricultural productivity interacts with

economic and population growth at the global level. We use a two-sector Schumpeterian

model of growth, in which a manufacturing sector produces the traditional consumption

good and an agricultural sector produces food to sustain contemporaneous population. Agri-

culture demands land as an input, itself treated as a scarce form of capital. In our model

both population and sectoral technological progress are endogenously determined, and key

technological parameters of the model are structurally estimated using 1960-2010 data on

world GDP, population, cropland and technological progress. Introducing random shocks to

the evolution of total factor productivity in agriculture, we show that uncertainty optimally

requires more land to be converted into agricultural use as a hedge against production shor-

tages, and that it significantly affects both optimal consumption and population trajectories.
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1 Introduction

Between 1960 and 2010, the global population rose from about three to seven billion, more than

it had increased in the previous two millennia (United Nations, 1999a), while real global GDP

per capita increased by a factor of about 2.5 (World Bank, 2016). With more people to feed and a

positive relationship between income per capita and food consumption per capita (Subramanian

and Deaton, 1996; Tilman et al., 2011), aggregate food demand increased significantly. Over

the same 50 years, however, agricultural production almost tripled, mostly on account of a

sustained increase in agricultural productivity (Alexandratos and Bruinsma, 2012), with the

result that food did not become more scarce, globally on aggregate (Alston and Pardey, 2014).

Turning to the future, the global population is projected to continue expanding by several billion

– likely reaching 10 billion before 2060 (United Nations, 2015) – and global GDP per capita

might double by mid-century (Clarke et al., 2014). Hence further improvements in agricultural

productivity will need to take place, driven by innovation and technology adoption.

In this paper we study how uncertainty and variability in agricultural output affect the ability

to feed a large, growing and increasingly rich global population. As we show in Figure 1, global

average total factor productivity (TFP) growth in agriculture has been around one per cent per

year over the period 1960 to 2010, contributing greatly to meeting the increase in food demand.

But it also shows that there has been large variation in growth rates across regions and over time,

ranging from -17 to +20 per cent per year.1

Weather variability is one cause of the stochasticity in the historical agricultural TFP series.

As Auffhammer and Schlenker (2014) observe in their review, the relationship between yields

and weather, specifically temperature, is highly nonlinear and concave (also see Schlenker and

Roberts, 2009). Consequently extreme heat over the growing season is a strong predictor of

crop yields. Anthropogenic climate change is expected to change patterns of weather variability

1 Data on TFP growth are derived from Fuglie and Rada (2015) and FAO (2015). We use the growth accounting
methodology of Fuglie and Rada (2015), which takes into account a broad set of inputs and aggregates TFP
growth rates at the level of 27 macro regions. Compared to Fuglie and Rada (2015), who apply a Hodrick-
Prescott filter to smooth year-on-year output fluctuations before calculating TFP, TFP growth rates reported
in Figure 1 are based on raw (unsmoothed) output data from FAO (2015), with the purpose of highlighting
variability of agricultural productivity growth.
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Figure 1: Total factor productivity growth in agriculture, 1960–2010
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Notes: Plotted data on yearly TFP growth are derived from Fuglie and Rada (2015) and FAO (2015). Average
change in TFP measures yearly growth rate of TFP averaged (without weights) across 27 macro regions defined
in Fuglie and Rada (2015). Minimum and maximum yearly growth rates across regions are also reported. See
footnote 1 for more details on the reported data.

worldwide. The Intergovernmental Panel on Climate Change thinks that anthropogenic climate

change is somewhere between “very likely” and “virtually certain” to result in more frequent

incidences of extreme heat, depending on the definition and timescale, as well as increasing

the frequency of other types of extreme weather, with varying, but generally lower, degrees of

confidence (IPCC, 2013). In addition, structural models that do not incorporate weather vari-

ability nonetheless show that anthropogenic climate change is likely to reduce food supply and

increase prices by way of gradual changes in average conditions (Nelson et al., 2014a). Other

emerging sources of variability in agricultural TFP have also been put forward, including the

loss of genetic and species diversity in farming systems (Di Falco, 2012), and increasing homo-

geneity of global food supplies (Khoury et al., 2014), making them potentially more vulnerable

to covariate shocks.

Inspired by these risks, some long-standing and some only now emerging, in this paper we

study the socially optimal global response to the risk of negative shocks to global agricultural

productivity. To do so we employ a stochastic version of a quantitative, two-sector endogenous

growth model of the global economy that was introduced in Lanz et al. (forthcoming). This

provides an integrated framework to study the joint evolution of global population, sectoral
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technological progress, per-capita income, the demand for food, and agricultural land expan-

sion (from a finite reserve of unconverted land). Specifically, the model distinguishes agriculture

from other sectors of the economy (which produce a bundle of consumption goods) and treats

both population and sectoral TFP as endogenous stock variables. The level of population in the

model derives from preferences over fertility by a representative household (Barro and Becker,

1989), with fertility costs capturing two components. First, additional labor units demand food,

and the level of per-capita food demand is proportional to income. In the model, food is pro-

duced by the agricultural sector, so that the evolution of agricultural productivity may act as a

constraint on the evolution of population. A second fertility cost is the time needed to rear and

educate children. Our model builds on the work of Galor and Weil (2000) by incorporating an

increasing relationship between the level of technology in the economy and the cost of popu-

lation increments. Technological progress raises education requirements and the demand for

human capital, capturing the well-documented complementarity between technology and skills

(Goldin and Katz, 1998).

Given the explicit representation of fertility decisions and the demand for food associated

with population and income growth, the model is well-suited to study the role of technology as

a driver of global economic development. In the model, sectoral technological progress is endo-

genously determined by the Schumpeterian R&D model of Aghion and Howitt (1992), in which

TFP growth is a function of labor hired by R&D firms. Thus, on the one hand technological

progress in agriculture reduces the cost of producing food, and is an important driver of agricul-

tural yields. In turn, agricultural technology improvements can alleviate Malthusian concerns

about the finite land input. On the other hand, economy-wide technological progress implies

a quantity-quality trade-off in fertility choices (through increasing education costs), and thus a

slowdown of population growth (as per Galor and Weil, 2000). Taken together, technological

progress is central to the development path generated by the model.

As discussed in detail in Lanz et al. (forthcoming), we use simulation methods to structurally

estimate key parameters of the model, minimizing the distance between observed and simulated

1960-2010 trajectories for world GDP, population, TFP growth and agricultural land area. The

estimated model closely replicates targeted data over the estimation period, and is also able to
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replicate untargeted moments, such as the share of agriculture in world GDP and the growth

rate of agricultural yields.

In this article, we introduce uncertainty about the evolution of agricultural TFP in the coming

years. Our objective is not to carry out an assessment of some specific uncertain event. Instead,

our contribution is to provide an internally consistent picture of how uncertainty in the evolution

of agricultural technology affects the socially optimal allocation of resources in a framework

with endogenous land conversion, population, and R&D-based TFP growth. Our TFP shocks

are therefore illustrative in nature, although they are calibrated to be within the same order

of magnitude as shocks observed in the past. In the baseline, agricultural TFP growth starts at

around one per cent per year in 2010 and declines thereafter. This implies that agricultural yields

increase linearly, which is consistent with extrapolating data on trend growth in yields from the

past several decades, particularly for the main grain crops (e.g. Alston et al., 2009; Godfray et al.,

2010). Given the structure of productivity shocks we consider, there is a 73 per cent probability

that this baseline situation prevails in 2030. If, on the other hand, negative productivity shocks

occur, and realized shocks are permanent in the sense that they affect agricultural productivity

in all subsequent periods, by 2030 there is a 24 per cent probability that agricultural TFP is

around 10 per cent lower relative to its baseline value, a 3 per cent probability that it is 15 per

cent lower, and a 0.1 per cent probability that it is more than 20 per cent lower.

In the model, the socially optimal response to uncertain agricultural productivity shocks

occurs in a number of key dimensions. First, given a risk of lower agricultural productivity in

the future, more labor can be allocated to R&D, so as to speed up technological progress. Second,

when a negative shock occurs, more primary factors can be allocated to agricultural production,

specifically labor, capital and land. Here, increasing agricultural land area involves a decision

to deplete a finite reserve base, so there is an intertemporal trade-off involved. Third, changes

in agricultural productivity affect population growth through food availability. In particular,

depreciation of agricultural technology increases the relative cost of food, with a negative effect

on fertility decisions, so that agricultural productivity shocks affect equilibrium trajectories in

the long run. Finally, per-capita consumption also adjusts downwards, as more resources are

allocated to the agricultural sector at the expense of manufacturing production.
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Results from the model indicate that the risk of negative shocks to agricultural TFP induces

a substantial reallocation of resources relative to the baseline. The planner allocates more re-

sources to agricultural R&D, but we find that, once a negative shock has occurred, agricultural

TFP does not catch up with its baseline path. Thus in our framework it is too expensive for

the planner to simply compensate lost agricultural TFP with supplementary R&D expenditure.

Rather the planner expands use of other primary inputs to agriculture. But, since there is an

opportunity cost of labor and capital (which are also used to produce the manufactured good),

the main response of the planner is to increase the area of agricultural land. In addition, as

technology shocks make food more expensive to produce, a second major implication is that

population declines relative to the baseline.

We carry out several extensions to the main analysis just described. First, we quantify how

substitutability between land and other primary inputs to agriculture affects the finding that

agricultural land is expanded. Our initial assumption is derived from the empirical work of

Wilde (2013), which suggests an elasticity of substitution between land and other inputs of 0.6.

We show that lower substitutability implies a significantly larger expansion of agricultural land

in response to productivity shocks. Second, we shed light on the the role of per-capita income

in the demand for food, by running a model in which food demand is simply proportional to

population. This is equivalent to assuming a subsistence constraint, as considered by Strulik

and Weisdorf (2008) for example, with zero income elasticity of food demand. Results suggest

that agricultural land expansion is very similar, but the welfare cost of the productivity shocks

is significantly larger. Finally, while our main set of runs is concerned with the occurrence of

uncertain negative shocks to an otherwise increasing trend for agricultural productivity, the lite-

rature also raises the possibility of gradually stagnating and decreasing agricultural productivity

(e.g. Alston et al., 2009). We therefore use the model to study a scenario in which trend agri-

cultural productivity growth gradually slows and eventually goes into reverse. The model again

suggests an extension of cropland area in order to compensate productivity losses.

The remainder of the article is organized as follows. In Section 2, we discuss how our work

relates to a number of strands of the literature. Section 3 provides an overview of the model

and estimation procedure, and then describes how we introduce stochasticity in agricultural
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productivity. Section 4 reports our main simulation results. Section 5 discusses implications of

these results and sensitivity analysis. We close with some concluding comments in Section 6.

2 Relation to the literature

Our work is related to at least two distinctive strands of literature that consider interactions

between economic growth, food production and population development. First, our article is

related to the seminal work of Galor and Weil (2000) and Jones (2001), which is aimed at

fundamental understanding of the joint evolution of economic growth and population over the

long run, and to Hansen and Prescott (2002), Strulik and Weisdorf (2008), Vollrath (2011),

Sharp et al. (2012) and Strulik and Weisdorf (2014), who also consider the role of agriculture

and land in growth. Related work by Bretschger (2013) and Peretto and Valente (2015) studies

natural resource scarcity in a general, growth-theoretic setting. While our approach shares these

theoretical underpinnings, it is distinctive in that key parameters of our quantitative model

are structurally estimated, so that our model closely replicates observed trajectories over the

past fifty years. In turn this allows us to investigate quantitatively the implications of stylized

uncertainty about future technological progress.

Second, our work is related to the literature on structural modeling of global agriculture,

land use and food trade, which is used to estimate the impact of future climate change. Many

of these models are brought together in the Agricultural Model Intercomparison and Impro-

vement Project (AgMIP) (see in particular Nelson and Shively, 2014, and other papers in the

same volume), which suggests that climate change could reduce global crop yields significantly

and result in an increase of global cropland area. The models used to derive these results fe-

ature high-resolution sectoral and regional representations of agriculture and land use, which

allows investigations into specific crops, regional impacts and trade. On the other hand, the

evolution of key drivers determining global impacts (such as population, the demand for food,

and agricultural yields) is exogenous to the simulations. By contrast, the model we formulate

endogenizes global aggregate population, per-capita income, and technology, which allows us to

study how these variables jointly respond to uncertainty about future agricultural productivity
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growth. Our work also differs in how uncertainty about agricultural productivity is implemen-

ted. In structural modeling of climate impacts, different scenarios are used to introduce gradual

changes in long-run average conditions, changes that are precisely calibrated on the outputs of

climate and crop models. Our scenarios focus instead on short-run (but persistent) productivity

shocks, which are calibrated to an order of magnitude on variability in past agricultural TFP, but

are more illustrative in spirit.

A paper in this line of research that is particularly close in spirit to our work is Cai et al.

(2014), as they use a dynamic-stochastic partial equilibrium model of global land use to study

the risk of an irreversible reduction in agricultural productivity. They show that, by 2100, this

risk increases the demand for cropland globally, at the expense of valuable biodiversity and

ecosystem services. Our work shares the purpose of Cai et al. (2014), but is otherwise comple-

mentary: while their work considers more finely partitioned land uses,2 ours emphasizes the

role of endogenous technological progress through R&D activities, and also allows population

to respond to changes in agricultural productivity through endogenous fertility.

As we consider responses to agricultural productivity shocks, our work also relates to an

extensive microeconometric literature that studies variability in agricultural productivity. In this

area, one line of research exploits exogenous variations in rainfall to quantity the impact of TFP

variations on outcomes in the agricultural sector (see notably Jayachandran, 2006; Di Falco and

Chavas, 2008). Close to our main topic of interest, Auffhammer et al. (2006) have shown that

rainfall variability affects the choice of cropland area under cultivation at the farm level.3 As

Auffhammer and Schlenker (2014) note, one limitation of these reduced-form studies is that

long-run effects and feedback mechanisms (e.g. general equilibrium) are difficult to identify

from the data. From this perspective, our structural empirical model provides novel perspectives

on these issues, accounting for a number of macro-level interrelationships between endogenous

outcomes, and quantifying how these jointly respond to negative agricultural supply shocks.

2 More specifically, Cai et al. (2014) consider the allocation of land to commercially managed forests (with many
different stock variables capturing different forest vintages) and to biofuel crops. Forest products and energy are
consumed by households. Non-converted ‘natural’ land generates ecosystem services, which are also valued by
households.

3 See also Schlenker and Roberts (2009) and Fezzi and Bateman (2015) on the role of temperature variability.

7



It is also important to stress that our aggregate global representation has its limitations, and

abstracts from a number of dimensions that have been discussed in the literature. First, by con-

struction, our model cannot inform spatial aspects of development, which include international

markets for agricultural commodities, and trade. In particular, because the world as a whole

is modeled as one region, factors are mobile in our framework, and openness to trade is only

implicit. Our model is, however, consistent with a multiregional model with trade in which the

expansion of agricultural land is incentivized through changes in international commodity pri-

ces. For example, a negative agricultural supply shock in a given region may not have an impact

on population or agricultural land area in that particular region, but if the shock is large enough

to have macro-level repercussions (as we do assume in our work), it will cause an increase in

world agricultural prices. This would in turn affect outcomes in price-sensitive regions (typically

developing regions), including fertility choices and agricultural land expansion.4 This is consis-

tent with Burgess and Donaldson (2010) and Costinot et al. (2016) for example, who emphasize

the role of interregional price signals in the allocation of resources, as well as the literature that

uses detailed numerical trade models of agricultural production, mentioned above.

Second, our model does not capture more complex institutional dimensions of growth and

food production that have been discussed elsewhere in the literature. One example is related to

political dynamics at work in the presence of agricultural output variability. Using data from Sub-

Saharan Africa, Brückner and Ciccone (2011) suggest that negative agricultural supply shocks

may provide a window of opportunity for improved democracy. In turn, improved democracy

would be expected to have a positive impact on economic growth (Acemoglu et al., 2017). In

our model, while negative shocks do lead to faster TFP growth, the channel through which TFP

increases (labor-intensive R&D) is inconsistent with an institutional view of growth. Similarly,

an extensive literature studies how local scarcities induce conflict and migration (see e.g. Prieur

and Schumacher, 2016, for an overview); the associated welfare costs are only implicit in our

highly aggregated representation of the world. Therefore, while our empirical framework brings

4 Note that our model accounts for the fact that remaining reserve lands are likely to be less productive, compared
to land already under cultivation. We come back to this below.
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together several well-established strands of economic research to provide novel insights into the

impacts of negative agricultural productivity shocks, its limitations ought to be kept in mind.

3 The model

This section first summarizes the key components of the model. Second, we present the simulation-

based structural estimation procedure. Third, we explain how we introduce stochastic shocks to

the evolution of agricultural productivity.5

3.1 The economy

Manufacturing production and agriculture

A manufacturing sector produces the traditional consumption bundle in one-sector models, with

aggregate output Yt,mn at time t given by:

Yt,mn = At,mnK
#
t,mnL

1�#
t,mn , (1)

where At,mn is TFP in manufacturing, Kt,mn is capital and Lt,mn is the workforce.6 The share of

capital is set to 0.3, which is consistent with Gollin (2002), for example.

Agricultural output Yt,ag is given by a flexible nested constant elasticity of substitution (CES)

function (see Kawagoe et al., 1986; Ashraf et al., 2008), in which the lower nest is Cobb-Douglas

in capital and labor, and the upper nest trades off the capital-labor composite with the land input

Xt:

Yt,ag = At,ag


(1� ✓X)

⇣
K✓K

t,agL
1�✓K
t,ag

⌘��1
�

+ ✓XX
��1
�

t

� �
��1

, (2)

5 As noted above, Lanz et al. (forthcoming) provides a comprehensive motivation for the structure of the model,
analytical results on the evolution of population and land, discussion of the selection and estimation of the
parameters, as well as ensuing baseline projections from 2010 onwards. Extensive sensitivity analysis is also
reported, showing that the baseline projections are robust to a number of changes to the structure of the model,
which comes from the fact that we estimate the model over a relatively long horizon. The GAMS code for the
model, replicating the baseline runs reported here, is available on Bruno Lanz’s website.

6 Note that under the assumption that technology is Hicks-neutral, the Cobb-Douglas functional form is consistent
with long-term empirical evidence reported in Antràs (2004).
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where � determines substitution possibilities between the capital-labor composite and land. Fol-

lowing empirical evidence reported in Wilde (2013), representing long-term substitution possi-

bilities between land and other factors in agriculture, we set � = 0.6. We further set the share

parameters ✓X = 0.25 and ✓K = 0.3 based on data from Hertel et al. (2012).

Innovations and technological progress

The evolution of sectoral TFP is given by (in the absence of negative productivity shocks, discus-

sed below):

At+1,j = At,j · (1 + ⇢t,jS) , j 2 {mn, ag} , (3)

where j is an index for sectors (here mn is manufacturing and ag is agriculture), S = 0.05 is the

maximum aggregate growth rate of TFP each period (based on Fuglie, 2012), and ⇢t,j 2 [0, 1]

measures the arrival rate of innovations, i.e. how much of the maximum growth rate is achieved

each period. TFP growth in the model, which is driven by ⇢t,j , is a function of labor allocated to

sectoral R&D:

⇢t,j = �j

✓
Lt,Aj

Nt

◆µj

, j 2 {mn, ag} ,

where Lt,Aj is labor employed in R&D for sector j, �j is a productivity parameter (normalized

to 1 to ensure that TFP growth is bounded between 0 and S) and µj 2 (0, 1) is an elasticity. The

parameters µmn and µag are structurally estimated and capture the extent of decreasing returns

to labor in R&D (e.g. duplication of ideas among researchers; Jones and Williams, 2000).

Expressions (3) and (4) represent a discrete-time version of the original model by Aghion

and Howitt (1992), in which the arrival of innovations is modeled as a continuous-time Poisson

process.7 One key departure from Aghion and Howitt (1992), however, is that the growth rate

of TFP is a function of the share of labor allocated to R&D. This representation, which is also

7 We implicitly make use of the law of large number to integrate out random arrival of innovation over discrete
time intervals.
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discussed in Jones (1995a) and Chu et al. (2013), is consistent with microfoundations of more

recent product-line representations of technological progress (e.g. Dinopoulos and Thompson,

1998; Peretto, 1998; Young, 1998), in which individual workers are hired by R&D firms and

entry of new firms is allowed (Dinopoulos and Thompson, 1999). One feature of such repre-

sentations, and therefore of ours, is the absence of the population scale effect, in other words

a positive equilibrium relationship between the size of the population and technological pro-

gress.8 Indeed, over time the entry of new firms dilutes R&D inputs and neutralizes the scale

effect, and in equilibrium aggregate TFP growth is proportional to the share of labor in R&D (see

Laincz and Peretto, 2006).

Population dynamics

Population in the model represents the stock of effective labor units Nt and evolves according

to the standard motion equation:

Nt+1 = Nt(1 + nt � �N ) , N0 given , (4)

where 1/�N captures the expected working lifetime, which is set to 45 years (hence �N = 0.022),

and increments to the labor force ntNt are a function of labor Lt,N allocated to rearing and

educating children:

ntNt = �t · Lt,N .

In this setting, 1/�t is a measure of the time (or opportunity) cost of effective labor units, and a

significant component of this cost is education. As mentioned earlier, empirical evidence sugge-

sts a complementarity between human capital and technology (e.g. Goldin and Katz, 1998), and

8 Note that Boserup (1965) and Kremer (1993) use the population scale effect to explain the sharp increase of
productivity growth following stagnation in the pre-industrial era, and it is also present in unified growth theory
models by Galor and Weil (2000) and Jones (2001) among others. Empirical evidence from more recent history,
however, is at odds with the scale effect (e.g. Jones, 1995b; Laincz and Peretto, 2006). The fact that it is absent
from our model is important, because population is endogenous, so that accumulating population could be
exploited to artificially increase long-run growth.
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we specify the cost of children as an increasing function of the economy-wide level of techno-

logy:

�t = �L⇣�1
t,N /A!

t ,

where � > 0 is a productivity parameter, ⇣ 2 (0, 1) is an elasticity representing scarce factors

required in child rearing, At is an output-weighted average of sectoral TFP, and ! > 0 measures

how the cost of children increases with the level of technology. The parameters determining the

evolution of the cost of increments to the labor force (�, ⇣ and !) are estimated as described

below.

We show analytically in Lanz et al. (forthcoming) that this representation of the cost of

children is consistent with the more comprehensive model of Galor and Weil (2000), in which

education decisions are explicit and the relationship between technology and human capital ari-

ses endogenously. More specifically, in our model the accumulation of human capital is implicit,

as it is functionally related to the contemporaneous level of technology. Like in Galor and Weil

(2000), however, technological progress raises the cost of children by inducing higher educati-

onal requirements, and is therefore an important driver of the demographic transition. In other

words, the positive relationship between technology and the cost of effective labor units implies

that, over time, the ‘quality’ of children (measured by their level of education) required to keep

up with technology is favored over the quantity of children, leading to a decline of fertility and

population growth.

In addition to the opportunity cost of time, there is an additional cost to population in-

crements through the requirement that sufficient food must be produced. Formally, we follow

Strulik and Weisdorf (2008) and make agricultural output a necessary condition to sustain the

contemporaneous level of population (see also Vollrath, 2011; Sharp et al., 2012, for similar

approaches):

Y ag
t = Ntf t , (5)

where f t is per-capita demand for food. In order to include empirical evidence about the income
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elasticity of food demand, we further specify

f = ⇠ ·
✓
Yt,mn

Nt

◆

,

with income elasticity of food demand  = 0.25 reflecting estimates reported in Thomas and

Strauss (1997) and Beatty and LaFrance (2005). We further calibrate the parameter ⇠ = 0.4 so

that aggregate food demand in 1960 is about 15 per cent of world GDP (as per data reported in

Echevarria, 1997).

Agricultural land conversion

Land is a necessary input to agriculture, and agricultural land Xt has to be converted from a

fixed stock of natural land reserves (X) by applying labor Lt,X.9 In our model, land is therefore

treated as a scarce form of capital, and we write the motion equation for agricultural land as:

Xt+1 = Xt(1� �X) +  · L"
t,X , X0 given , Xt  X , (6)

where the parameters  > 0 and " 2 (0, 1) are structurally estimated. Through equation (6), we

allow converted land to revert back to its natural state over a fifty-year time frame (i.e. �X =

0.02). Note also that an important implication of (6) is that, as labor is subject to decreasing

returns in land-conversion activities, the marginal cost of land conversion increases with Xt.

Intuitively, this captures the fact that the most productive plots are converted first, whereas

additional land might be less amenable to exploit for agricultural production. An implication is

that the cost associated with bringing marginal plots into production because of uncertainty is

higher than the cost of converting land earlier in the development process.

Households preferences and savings

In the tradition of Barro and Becker (1989), household preferences are defined over own con-

9 Note that aside from the space needed to grow the food, the model does not quantify the demand for space by
agents in the model, such as industrial use to produce manufactured goods, or residential use to accommodate
the growing population. While this sort of land-use competition is certainly important at a local level, we abstract
from that to focus on an aggregate global representation of development.
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sumption of a (composite) manufactured good, denoted ct, the level of fertility nt and the utility

that surviving members of the family will enjoy in the next period Ui,t+1. Given survival proba-

bility 1 � �N , and simplifying assumptions that (i) children are identical and (ii) parents value

their own utility in period t+1 the same as their children’s (see Jones and Schoonbroodt, 2010),

the utility function of a representative household is defined recursively as:

Ut =
c1��
t � 1

1� �
+ �[(1� �N ) + nt]

1�⌘Ut+1 ,

where � = 2 reflects an intertemporal elasticity of substitution of 0.5 (e.g. Guvenen, 2006),

� = 0.99 is the discount factor and ⌘ is an elasticity determining how the utility of parents

changes with the number of surviving members of the household. As we show in Lanz et al.

(forthcoming), it is straightforward to express preferences from the perspective of the dynastic

household head, yielding the following dynastic utility function:

U0 =
1X

t=0

�tN1�⌘
t

c1��
t � 1

1� �
, (7)

and we set ⌘ = 0.01. This implies that altruism towards surviving members of the dynasty

remains almost constant as the number of survivors increases. It makes the household’s objective

close to the standard Classical Utilitarian welfare function.

As in the multi-sector growth model of Ngai and Pissarides (2007), manufacturing output

can either be consumed or invested into a stock of physical capital:

Yt,mn = Ntct + It , (8)

where Ntct and It measure aggregate consumption and investment respectively. The motion

equation for capital is given by:

Kt+1 = Kt(1� �K) + It , K0 given , (9)

where �K = 0.1 is the yearly rate of capital depreciation (Schündeln, 2013).
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3.2 Structural estimation of the model

A schematic representation of the model is provided in Figure 2. We formulate the model as a

social-planner problem, selecting paths for investment It, and allocating labor Lt,j and capital

Kt,j across activities in order to maximize intertemporal welfare (7) subject to technological

constraints (1), (2), (3), (4), (5) (6), (8), (9) and feasibility conditions for capital and labor:

Kt = Kt,mn +Kt,ag , Nt = Lt,mn + Lt,ag + Lt,Amn + Lt,Aag + Lt,N + Lt,X .

The constrained non-linear optimization problem associated with the planner’s program is sol-

ved numerically by searching for a local optimum of the objective function (the discounted sum

of utility) subject to the requirement of maintaining feasibility as defined by the constraints of

the problem.10

We apply simulation methods to structurally estimate parameters determining the cost of

fertility (�, ⇣,!), labor productivity in R&D (µmn,ag) and labor productivity in land conversion

( , "). In practice, we first calibrate the initial value of the state variables to match 1960 data,

so that the model is initialized in the first year of the estimation period. For each parameter to

be estimated from the data, we define bounds for possible values (0.1 and 0.9 for elasticities

and 0.03 and 0.3 for labor productivity parameters) and simulate the model for a randomly

drawn set of 10,000 vectors of parameters. We then formulate a minimum distance criterion,

which compares observed 1960-2010 time series for world GDP (Maddison, 1995; Bolt and van

Zanden, 2013), population (United Nations, 1999b, 2013), cropland area (Goldewijk, 2001;

Alexandratos and Bruinsma, 2012) and sectoral TFP (Martin and Mitra, 2001; Fuglie, 2012)

with trajectories simulated from the model.11 In the model these data correspond to Yt,mn+Yt,ag,

10 The numerical problem is formulated in GAMS and solved with KNITRO (Byrd et al., 1999, 2006), a specialized
software programme for constrained non-linear programs. Note that this solution method can only approximate
the solution to the infinite horizon problem, as finite computer memory cannot accommodate an objective with
an infinite number of terms and an infinite number of constraints. However, for � < 1 only a finite number of
terms matter for the solution, and we truncate the problem to the first T = 200 periods without quantitatively
relevant effects for our results.

11 Note that TFP growth estimates are subject to significant uncertainty, and we conservatively assume that it
declines from 1.5 per cent between 1960 and 1980 to 1.2 per cent between 1980 and 2000, and then stays at 1
per cent over the last decade.
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Figure 2: Schematic representation of the model
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Nt, Xt, At,mn and At,ag respectively. Thus, formally, for each vector of parameters and associated

model solution, we compute:

X

k

"
X

⌧

(Z⇤
k,⌧ � Zk,⌧ )

2/
X

⌧

Zk,⌧

#
, (10)

where Zk,⌧ denotes the observed quantity k at time ⌧ and Z⇤
k,⌧ is the corresponding value simu-

lated by the model. By gradually refining the bounds of each parameter, we converge to a vector

of parameters that minimizes objective (10). We find that the model closely fits the targeted

data; the resulting vector of estimates and fitted trajectories over the estimation period are re-

ported and briefly discussed in the Appendix (see also Lanz et al., forthcoming, for an extensive

discussion of the estimation results).

At this stage it is important to note that the social planner representation is mainly used

as a tool to make structural estimation of the model tractable: we rationalize the data “as

if” it had been generated by a social planner. Thus market imperfections prevailing over the

estimation period will be reflected in the parameters that we estimate from observed trajectories,

and will thus be reflected in the baseline simulations of the model (i.e. using the model to

extrapolate the behavior of the system observed over the past fifty years).12 But given the

estimated technological parameters, simulations with the model away from the baseline will

reflect a socially optimal allocation of resources.

3.3 Introducing stochastic shocks to agricultural productivity

In the basic formulation of the model, which is used for estimating the parameters over the

period 1960-2010, the evolution of sectoral TFP is deterministic and depends on the share of

labor employed in sectoral R&D activities. We now study the evolution of the system beyond

12 Because there are externalities in the model, most notably in R&D activities (see Romer, 1994, for example) the
optimum determined by the social planner solution will differ from a decentralized allocation. Thus if we were
able to estimate the parameters using a decentralized solution method, a different set of estimates would be
required to match observed trajectories over the estimation period. As shown by Tournemaine and Luangaram
(2012) in the context of similar model (without land), however, quantitative differences between centralized
and decentralized solutions are likely to be small.
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2010, and introduce stochasticity in how agricultural TFP evolves over time. Specifically, it is

assumed that technological progress in agriculture is subject to stochastic shocks of size ✏ > 0

that occur with probability p. Conversely with probability 1� p there is no shock to agricultural

productivity (hence ✏ = 0) and the evolution of TFP occurs as per the deterministic specification

described above. Both p and ✏ are assumed to be known by the planner, thus the situation is one

of pure risk.13

Formally, equation (3) describing the evolution of agricultural productivity is augmented

with a non-negative term, which represents the possibility that agricultural TFP may not follow

the functional trajectory we have postulated:

Ãt+1,ag,s = Ãt,ag,s · (1 + ⇢t,ag,sS � ✏t+1,s) , (11)

where ✏t+1,s captures the specific realization of the shock in state of the world s, and we index all

variables by s to capture the fact that they are conditional on a specific sequence of ✏t,s over time.

A stochastic shock affects outcomes in period t+1, while the planner only observes the outcome

after allocating resources in period t. We further assume that the planner is an expected utility

maximizer, weighting welfare in the different states of the world by its respective probability.

The ensuing objective function is then:

W =
X

s

ps

1X

t=0

�tN1�⌘
t,s

c1��
t,s � 1

1� �
, (12)

with
P

s ps = 1.14

Even though this stochastic structure is quite simple, the number of possible states of the

world in each period grows at 2t. In turn, because the model is formulated as a non-linear

13 We note that the probability of negative shocks and their size might be a function of agricultural activities.
In a companion paper (Lanz et al., 2016), we discuss how the scale of modern agriculture may affect such
negative feedback effect, focusing on the expected impact of negative shocks over time rather than on stochastic
occurrences. In the present paper, however, we focus on a more general exogenous source of uncertainty, in which
the probability and size of shocks is fixed.

14 Note that this formulation implies the standard assumption that markets are complete, both over time and across
states of the world.
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optimization problem, this implies that the number of variables that needs to be computed

over the whole horizon increases exponentially.15 Given that the dimensionality of the decision

problem grows with the set of possible states of the world, we make two further simplifications.

First, we solve the model from 2010 onwards using two-year time steps (instead of yearly time

steps). This significantly reduces the number of variables that needs to be computed, without

significantly affecting the resulting trajectories.16 Second, we consider shocks in only three time

periods, which is sufficient to illustrate the mechanisms at work.

The shock we consider is a 10 per cent probability that agricultural production declines by 5

per cent each year over two years. This is in the range implied by Figure 1, and is also broadly

consistent with changes in productivity discussed in Nelson et al. (2014b) and Cai et al. (2014).

Hence, starting the simulation in 2010, we assume that the first realization of the shock may

occur after 2016 allocation decisions have been made, so that effects are felt in 2018. In the bad

state of the world, which occurs with a probability of 10%, agricultural TFP is (1� 0.05)2 ⇠= 0.9

of that prevailing in the good state of the world. In expected value terms, the shock is thus

roughly equivalent to a one per cent decrease in TFP over two years. The same shock can then

occur in 2018, with effects felt in 2020, and in 2020, with effects felt in 2022.

To summarize, we initialize the model in 2010, and negative TFP shocks can occur in 2016,

2018 and 2020, with effects being felt in subsequent periods. After 2022, no more shocks occur

and the problem becomes deterministic (conditional on the state of the world in which the

planner happens to be). Of course, the results would remain qualitatively similar if we were

to consider the reoccurence of shocks beyond 2020, so that it is relatively easy to see how our

results would generalize.

15 More specifically, as the planner faces a dynamic problem, optimal decisions in each time period are conditio-
nal on the history of shocks (i.e. where he is in the exponentially-growing uncertainty tree), and the planner
maximizes the expected utility of his decisions over the remaining event tree. Thus states of the world sharing
a common parent node will share decision variables until the subsequent realization of the productivity shock,
and diverge thereafter, so that computational requirements increase.

16 Increasing the time-steps to evaluate the choice of the controls implies some small differences in optimal paths
relative to the solution using one-year time steps. Another approach would be to formulate the problem recur-
sively and solve it with dynamic programming methods. This approach is, however, subject to dimensionality
restrictions in terms of the number of state variables that can be included.
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4 Results: Optimal control and simulations

This section provides the main results from solving the stochastic control problem. First, we

describe the particular agricultural productivity scenarios that we focus on. Second, we report

implied trajectories for agricultural technology, agricultural land, population and welfare.

4.1 Scenario description

To evaluate the socially optimal response to agricultural productivity risk, we contrast trajec-

tories resulting from four different situations. First, we consider a case in which no shocks to

agricultural TFP will occur, and the planner knows this for sure. This represents our baseline,

as reported in Lanz et al. (forthcoming). Values for selected variables are reported in Table 1.

World population starts at just below 7 billion in 2010 and grows to 8.5 billion by 2030, a 20

per cent increase. At the same time, cropland area increases by 70 million hectares, or 5 per

cent. These figures are broadly consistent with the latest population projections of the United

Nations (2015) and with land-use projections by FAO, reported in Alexandratos and Bruinsma

(2012), and AgMIP, reported in Schmitz et al. (2014). The growth rate of agricultural TFP starts

at 0.9 per cent per year in 2010 and declines over time, which is rather conservative compared

with the assumptions used in Alexandratos and Bruinsma (2012). Importantly, these figures

represent projections from the fitted model and are thus informed by the evolution of agricul-

tural TFP from 1960 to 2010, as the estimated model essentially projects forward the pace of

development that has been observed in recent history.

The second situation we consider is also deterministic. We assume that shocks occur in 2016,

2018 and 2020. We label this scenario ‘2016-2018-2020.’ In the period just following each of

the three shocks, agricultural TFP is exogenously brought down by 10 per cent, although the

planner anticipates each shock and can reallocate resources relative to the baseline.

In the third scenario, labeled ‘expected value’, the planner allocates resources taking into

account the expected value of the TFP reduction. In other words, he takes into account the

risk of a 10 per cent reduction in TFP each decision period, but weights that reduction by the

associated probability of 10 per cent. Thus, agricultural TFP growth in each decision period is
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Table 1: Deterministic ‘no shocks’ scenario: Baseline values for selected variables

2010 2020 2030

World population (billion) 6.95 7.73 8.47
Cropland area (billion hectares) 1.62 1.66 1.69
Yearly agricultural TFP growth rate 0.0094 0.0086 0.0078
Per-capita consumption (thousand intl. dollars) 4.29 4.88 5.46

exogenously brought down by around one percentage point. This scenario amounts to analyzing

the allocation decisions of a risk-neutral planner, and where the realization of the shock happens

to be exactly the expected value of the shock.

Finally, we compute trajectories that maximize expected utility. In this situation, the plan-

ner is risk-averse (relative risk aversion is set to � = 2). He takes into account the risk that

agricultural TFP may decline, and what this entails for social welfare. A key point is that allo-

cation decisions are contingent on the realized state of the world. In other words, after each

decision period in which the risk is realized, the decision tree branches out, and the planner

makes allocation decisions contingent on being in a particular node in the uncertainty tree. By

construction, there are then 23 = 8 possible states of the world in 2030, and thus the same num-

ber of stochastic scenarios for an expected-utility maximizing planner (we label each stochastic

scenario according to the years in which TFP shocks are realized).

4.2 Agricultural technology paths

Figure 3 shows the paths for agricultural TFP under alternative scenarios. Starting with the

deterministic scenarios, which are displayed in panel (a), agricultural TFP grows linearly at

around one per cent per year (and falling slightly) under the best-case ‘no shocks’ scenario.

Under the deterministic ‘expected value’ path, TFP grows at a lower pace from 2016 to 2020,

reflecting the expected value of the negative shocks. But before 2016 TFP grows ever so slightly

quicker in the ‘expected value’ scenario, because the planner knows that small negative shocks

will occur from 2016 to 2020 and makes provisions for them (see below). This anticipatory
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Figure 3: Agricultural TFP under alternative scenarios

(a) Deterministic scenarios
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(b) Stochastic scenarios
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effect, as well as the subsequent shock to productivity, is more clearly apparent in the worst-case

‘2016-2018-2020’ scenario. Differences across deterministic scenarios are further illustrated in

Figure 4, panel (a), which reports paths for agricultural TFP relative to the ‘no shocks’ scenario.

It shows that, by 2022, agricultural TFP on the ‘expected value’ path is around three per cent

lower than on the ‘no shocks’ path, and in the ‘2016-2018-2020’ scenario TFP it is more than 20

per cent lower.

Turning to the stochastic scenarios, reported in panel (b) of Figures 3 and 4, we distinguish

four different groups of possible realizations according to the number of shocks that occur over

time (in Figure 3 we also report the posterior probability distribution for each scenario). First,

under the stochastic ‘no shocks’ scenario there is no shock occurring in either 2016, 2018 or

2020, a state of the world with posterior probability of around 0.73. However, unlike the de-

terministic ‘no shocks’ scenario, the planner prepares for the possibility of negative TFP shocks,

and accordingly TFP is slightly higher. By contrast, in stochastic scenario ‘2016-2018-2020’ a

negative shock occurs in all three periods. This scenario has a posterior probability of 0.001.

Before the first shock, the planner does not know for sure whether the world will end up in a
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Figure 4: Agricultural TFP relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios
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good state, or in a bad, shock state. Because of the consequent need to hedge, agricultural TFP

is not significantly different from that in the deterministic ‘no shocks’ scenario. However, after

2020 agricultural TFP in stochastic scenario ‘2016-2018-2020’ is significantly lower than in the

deterministic ‘2016-2018-2020’ scenario, because the planner did not fully anticipate that he

would end up in the worst outcome possible.

The last two groups of stochastic scenarios include those where either one or two negative

TFP shocks occur. In scenarios ‘2016’, ‘2018’ and ‘2020’, only one TFP shock occurs in each of

these respective years, so that by 2022 agricultural TFP is roughly 10 per cent lower than under

the deterministic ‘no shocks’ scenario. The posterior probability associated with this group of

scenarios is around 0.24. Under scenarios ‘2016-2018,’ ‘2016-2020’ and ‘2018-2020’ there are

two shocks occurring, so that by 2020 agricultural TFP is roughly 20 per cent lower relative to

the deterministic ‘no shocks’ scenario. The posterior probability is around 0.03. Note that, in

both groups of scenarios, TFP growth after 2020 is slightly more rapid than under the ‘no shocks’

scenarios, as more resources are allocated to R&D. However, catching up lost productivity gains

is very slow.
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Figure 5: Global cropland area relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios
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4.3 Optimal global land use

Implications for global cropland of alternative paths for agricultural TFP are displayed in Figure

5. We report the differences in cropland area relative to the deterministic ‘no shocks’ scenario (in

million hectares). Recall that, in the deterministic ‘no shocks’ scenario, cropland area increases

by 70 million hectares between 2010 and 2030 (see Table 1).

An important feature of Figure 5 is that, if the planner knows for sure that TFP will decline in

the future (panel a), optimal cropland area immediately diverges from the ‘no shocks’ scenario,

with significantly more land being converted from natural land reserves. By 2030, an additi-

onal 70 million hectares are converted in the deterministic ‘2016-2018-2020’ scenario, which

corresponds with a doubling of the pace at which land is converted in the ‘no shocks’ scenario.

Why is so much extra land brought into agricultural use? The answer is that the planner prefers

to substitute towards land to maintain the level of food production, because other production

factors have to be taken away from the manufacturing and R&D sectors, with a consequent large

opportunity cost. The deterministic ‘expected value’ path only features a slightly larger stock of

cropland than in the ‘no shocks’ scenario. Indeed, over 20 years only an additional 7 million
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hectares are converted.

Turning to the stochastic scenarios, reported in panel (b), we observe that they all feature a

larger stock of land relative to the ‘no shocks’ scenario. However the stock of land in stochastic

scenario ‘2016-2018-2020’ (in which three negative shocks occur) is significantly lower than

that in the corresponding deterministic ‘2016-2018-2020’ scenario. Again, the planner must

always hedge against an uncertain future in the stochastic scenarios, but whenever a negative

TFP shock occurs there is an immediate increase in the amount of agricultural land brought into

the system, in order to compensate for lower agricultural TFP.

4.4 Welfare analysis: Population and per-capita consumption

We now turn to the welfare implications of uncertainty about agricultural TFP, focusing on

population dynamics and per-capita consumption of the manufacturing product. Recall that

these are the two variables entering the objective function of the social planner (see equation

7).

Results for global population paths, relative to the deterministic ‘no shocks’ scenario, are

reported in Figure 6. As expected, a reduction in agricultural TFP has a negative impact on

population. This follows from the fact that agricultural productivity growth declines, and the

relative cost of food production increases, so the planner optimally chooses to reduce fertility

on account of the higher cost of feeding the population. The effect is again most striking in the

deterministic ‘2016-2018-2020’ scenario, where the accumulation of population is significantly

slower compared to the ‘no shocks’ scenario: by 2030, population is 170 million lower. This

is substantial, given it is caused by a reduction of agricultural TFP of 25 per cent below the

deterministic ‘no shocks’ reference scenario over a window of 6 years.

The impact of a reduction of agricultural TFP on population is long lasting, as differences

between paths in which a negative shock occurs and the deterministic ‘no shocks’ scenario are

hysteretic, that is they remain in the long run. In particular, we observe that stochastic scenarios

with the same number of shocks (on the one hand ‘2016’, ‘2018’ and ‘2020’, and on the other

hand ‘2016-2018’, ‘2016-2020’ and ‘2018-2020’) converge to the same loss of global population

relative to the deterministic ‘no shocks’ scenario.
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Figure 6: Global population relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios
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Per-capita consumption of the manufacturing good relative to the deterministic ‘no shocks’

scenario is reported in Figure 7. We find that differences in per-capita consumption between

the deterministic best and worst cases (panel a) fluctuate at around one per cent. This cap-

tures the fact that, in our model, the two consumption goods are complements, so that more

expensive agricultural products also reduce the demand for other consumption goods. In other

words, in the face of a certain or uncertain shock to agricultural TFP in the future, the planner

reduces consumption of both goods in order to smooth consumption over time, and allocates

manufacturing output towards increasing the stock of capital.

In stochastic scenarios, reported in panel b, per-capita consumption fluctuates significantly.

In stochastic scenario ‘no shocks’, per-capita consumption is initially lower than it is in the de-

terministic ‘no shocks’ scenario, although after the first shock the stochastic ‘no shocks’ scenario

reaches almost 0.5 percentage points higher than the deterministic ‘no shocks’ scenario. This

reflects the extra consumption afforded by the hedging behavior once the planner knows that

the anticipated shock will not occur. However, when a negative shock occurs, there is a sharp

decline in per-capita consumption of around 1.5 per cent relative to the deterministic ‘no shocks’
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Figure 7: Per-capita consumption relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios
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scenario. In the worst-case stochastic scenario ‘2016-2018-2020’ where three shocks occur, the

drop in per-capita consumption is much larger than the corresponding deterministic ‘2016-2018-

2020’ scenario.

5 Discussion and sensitivity analysis

Overall, our results suggest that uncertainty about the future evolution of agricultural TFP has

major implications for growth, population and land use. In scenarios where one shock occurs,

agricultural TFP is around 10 per cent lower than in the deterministic ‘no shocks’ trajectory

(which we shall henceforth refer to as the ‘baseline’, for convenience). Given baseline growth

of agricultural TFP of about one per cent per year, this would correspond roughly to a ten-year

hiatus in technological progress. Given our assumptions, the probability that the planner faces

such a state of the world is around 25 per cent. By 2030, our model indicates that a shock in

2016, 2018 or 2020 would trigger cropland expansion of approximately 20 million hectares,

which would be in addition to the 70 million hectares conversion occurring in the baseline,
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while the optimal population would be around 40 million lower than in the baseline. If two

shocks occur, so that agricultural TFP is around 17 per cent lower than the baseline, more than

30 million hectares of additional cropland are created. At the same time, global population is

80 million lower.

While these figures may appear to be small relative to the current cropland area and popu-

lation, they are, from a policy perspective, quite large. From 1990 to 2010, about 100 million

hectares of land were brought into cropping. In this period, there has been growing concern

about the value of the lost natural land and associated ecosystem services (e.g. Millennium

Ecosystem Assessment, 2005). Most of the land conversion has been and will be taking place

in developing countries, where a large share of valuable biodiversity remains, whereas in deve-

loped countries we observe a decline in cropland area (Alexandratos and Bruinsma, 2012). In

addition, as strategies to mitigate climate change, in the future we may see increasing land used

for the production of biofuels, or for afforestation, instead of for food production. The scale

of our results is thus important from the perspective of global conservation and rural land-use

policy. Second, while the ‘loss’ of population is small relative to observed population growth

and that expected to take place in the near future, it is substantial, as it represents the optimal

fertility response to lower agricultural productivity. Put another way, a non-optimal fertility re-

sponse by a large number of households maximizing their own private objectives could generate

a food-security problem at the aggregate level.

In the following, we assess the sensitivity of our results with respect to three key assumptions

we have made. First, we consider the role of substitutability between land and the capital-

labor composite in agriculture. Second, we discuss how the income elasticity of food demand

affects our results.17 Finally, we study the implications of a scenario in which trend agricultural

productivity growth declines to zero and then becomes negative.

17 For these two sets of simulation, we re-estimate the model to remain on the same trajectory over the estimation
period 1960-2010. This ensures that the results are comparable with those reported above (see Lanz et al.,
forthcoming, for a complete description of the re-estimation of the parameters).
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Figure 8: Global cropland area relative to the deterministic ‘no shocks’ scenario (� = 0.2)

(a) Deterministic scenarios
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(b) Stochastic scenarios
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5.1 Lower land substitutability (� = 0.2)

A key determinant of the demand for agricultural land is the parameter � (see equation 2),

which measures the elasticity of substitution between land and a capital-labor composite. The

baseline value for � in our model is 0.6. This estimate is derived from Wilde (2013), who

uses data from pre-industrial England to measure long-run substitution possibilities between

land and other inputs. There is, however, some uncertainty about the external validity of this

estimate when it comes to the present model and in particular the present context, where we

use the model not to project into the very long run (as we do in Lanz et al. (forthcoming)),

but rather to focus on the period from 2010 to 2030 and study deviations from the baseline

trajectories. Other applied modeling work typically uses lower elasticities of substitution. The

example we consider here is taken from Hertel et al. (2012), who suggest a value of 0.2.

Figure 8 reports results, with � = 0.2, for agricultural land area under both deterministic

scenarios (panel a) and stochastic scenarios (panel b). Figure 9 reports the corresponding results

for consumption per capita.

Panel (a) of Figure 8 shows that, under the deterministic scenarios, global cropland expands
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Figure 9: Per-capita consumption relative to the deterministic ‘no shocks’ scenario (� = 0.2)

(a) Deterministic scenarios
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(b) Stochastic scenarios

 

-17%

-15%

-13%

-11%

-9%

-7%

-5%

-3%

-1%

1%

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

No shocks 2016 2018 2020

2016-2018 2016-2020 2018-2020 2016-2018-2020

in a qualitatively similar fashion when substitutability of land is lower, but the size of the ex-

pansion is significantly greater. Relative to the deterministic ‘no shocks’ scenario, an additional

110 million hectares is brought under cultivation globally by 2030 in the worst-case ‘2016-2018-

2020’ scenario. Recall that when � = 0.6 the equivalent difference between scenarios was about

70 million hectares, so reducing the substitutability of land results in an additional 40 million

hectares of cropland. Panel (b) shows that, under the stochastic scenarios, the area of additional

cropland (relative to the deterministic ‘no shocks’ scenario) is roughly doubled when � = 0.2.

For example, the increment rises from 50 to 100 million additional hectares of cropland by 2030

in the stochastic ‘2016-2018-2020’ scenario.

Figure 9 shows that, despite the greater expansion of cropland that is triggered when the

substitutability of land is lower, the planner makes a substantial reduction in consumption of

the manufactured good in order to cope with the shocks to agricultural TFP and the associated

increase in the cost of producing food. According to panel (a), in the deterministic ‘2016-2018-

2020’ scenario, consumption per capita is 9 per cent lower than in the deterministic ‘no shocks’

scenario by 2030. Panel (b) also shows large reductions in optimal consumption per capita
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under the various stochastic shock scenarios. In the worst-case stochastic ‘2016-2018-2020’

scenario, consumption per capita falls by as much as 17 per cent relative to the deterministic

‘no shocks’ scenario in 2022, before recovering to about 13 per cent lower in 2030. Hence a

key consequence of a lower substitutability of land in agriculture is a higher welfare cost of

agricultural TFP shocks.

5.2 Subsistence food demand ( = 0)

In our main model specification, food demand is proportional to the level of population and

is also an increasing (but concave) function of per-capita income (here per-capita output from

the manufacturing sector). This is shown in equation (5), where the parameter  measures the

income elasticity of food demand. By making a link between manufacturing and agricultural

output, the parameter  > 0 creates complementarity, so that negative shocks to agricultural

productivity will have a direct negative impact on production in the manufacturing sector. As

an alternative, in this section we consider a case in which food demand is solely proportional

to population ( = 0), which is equivalent to a case in which food demand represents a physi-

ological requirement. In this framework, which is also studied in Strulik and Weisdorf (2008),

Vollrath (2011) and Sharp et al. (2012), food production is directly proportional to population

and hence implicitly directly enters into the objective of the planner.

Figure 10 reports results for  = 0. As usual, panel (a) includes the deterministic scenarios

and panel (b) the stochastic scenarios. Figures 11 and 12 report corresponding results for

population and consumption per capita respectively.

Figure 10 shows that optimal cropland area is fairly insensitive to changing the income

elasticity of food demand. Cropland expansion in all scenarios, deterministic and stochastic, is

only slightly lower relative to the comparable trajectories reported in Figure 5. However, Figure

12 shows that, when the income elasticity of food demand is zero, the trajectory for optimal

consumption per capita differs significantly from that derived with  = 0.25 (cf. Figure 7). In

particular, when  = 0 and the planner faces a negative shock to agriculture, the decline in per-

capita consumption relative to the ‘no shock’ scenario is initially small, but then increases with

time. Ultimately, therefore, the decline in per-capita consumption is more pronounced when
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Figure 10: Global cropland area relative to the deterministic ‘no shocks’ scenario ( = 0)

(a) Deterministic scenarios
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(b) Stochastic scenarios
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Figure 11: Global population relative to the deterministic ‘no shocks’ scenario ( = 0)

(a) Deterministic scenarios

 

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

Po
pu

la
tio

n 
in

 m
ill

io
n

No shocks Expected value 2016-2018-2020

(b) Stochastic scenarios
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Figure 12: Per-capita consumption relative to the deterministic ‘no shocks’ scenario ( = 0)

(a) Deterministic scenarios
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(b) Stochastic scenarios
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 = 0 than when  = 0.25.

There are two main drivers of these differences. First, as expected, when the demand for food

is not driven by income ( = 0), aggregate consumption declines in response to an agricultural

productivity shock, but not as much as when  = 0.25. This is because  > 0 implies some degree

of complementarity between manufacturing and food consumption. Second, as we show in

Figure 11, since  > 0 implies that more weight is given to sustaining population, the decline in

population following a shock is significantly smaller than when  = 0. As the stock of population

grows larger over time, this in turn implies that the decline in per-capita consumption is larger.

Thus, in sum, when food consumption reflects a subsistence constraint, the planner favors a

large population over per-capita consumption, reflecting a preference over quantity rather than

quality.

5.3 Negative agricultural productivity growth

Our last extension to the model considers the possibility of a secular decline in the growth trend,

rather than sudden and persistent shocks to a trend of otherwise growing agricultural TFP. This
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Figure 13: Agricultural TFP: Negative productivity growth scenario

(a) Agricultural TFP in levels
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possibility has been raised by Alston et al. (2009) for example. Specifically, we consider a tra-

jectory for agricultural TFP in which growth is around 1 per cent from 2010 to 2015 (which is

the same as our main specification), declines to 0.5 per cent during the period 2015 to 2025,

then drops to around zero and smoothly declines thereafter (at the same pace as in the main

specification). The resulting trend is plotted in Figure 13, alongside agricultural TFP growth

in our main specification. To make alternative specifications readily comparable, we constrain

R&D-based TFP growth (and its associated labor requirements) to remain on its baseline tra-

jectory, so agricultural R&D cannot compensate for this secular decline. In other words, the

planner cannot add more labor to agricultural R&D so as to speed up technological progress in

that sector. Therefore, since the planner cannot affect productivity growth, other adjustments

are needed to compensate.

Results for agricultural land and per-capita consumption are reported in Figure 14. Global

cropland is expanded gradually but significantly relative to the main deterministic ‘no shocks’

specification, with more than 200 million hectares of additional land brought under cultivation

by 2050. When added to cropland expansion under the deterministic ‘no shocks’ scenario, this
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Figure 14: Global cropland and per-capita consumption: Negative productivity growth scenario

(a) Cropland relative to baseline
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amounts to a total expansion of about 320 million hectares by 2050. As a sense-check, the

median projection of the AgMIP models is for global cropland to expand by about 175 million

hectares by 2050 in a reference scenario without climate change, but the range of uncertainty

(i.e. the inter-model range) extends from about -100 million hectares to more than 400 million

hectares (Schmitz et al., 2014).

The right panel of Figure 14 shows that consumption per capita is initially higher under the

scenario of agricultural TFP decline, which may appear puzzling at first. But this increase is due

to the fact that, with an unexpected change in the trajectory for agricultural TFP growth, the

saving rate is too high, and the planner immediately starts to consume more than he initially

intended to. However, despite a short-term increase in per-capita consumption, over the longer

run the difference erodes and after 2030 it is lower, falling to about 2.7 per cent below the deter-

ministic ‘no shocks’ scenario by 2050. This result confirms the view that a decline in agricultural

TFP growth in the near future has large and long-lasting macroeconomic consequences in terms

of living-standards.
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6 Conclusion

The development of agricultural technology is a key determinant of the ability to sustain enough

food production in a world with growing population and per-capita income. Yet assessing un-

certainties about its future evolution is difficult because of the wide ranging implications it will

have. In this article we have taken a dynamic-stochastic view of the problem, focusing on the

macroeconomic consequences at the global level, where both technological progress and popu-

lation are endogenous.

The main contribution of our work is to quantify implications of technological uncertainty,

showing that it implies significantly more land conversion to sustain agricultural production.

Because our model combines a set of carefully selected theoretical blocks with an empirically-

driven approach to the selection of parameters determining the quantitative response of the

model, it suggests a number of hypothesis that could be tested empirically in future work. One

of these is to focus on closed economies (presumably in the past) and quantify the change

in agricultural land area following a negative agricultural shock. Another related empirical

endeavor suggested by our work is related to substitutability of land in agriculture. We have

shown that our results are significantly affected by assumptions about this quantity, and further

evidence along the lines suggested by Wilde (2013) is warranted.

Our work further shows that population is significantly affected by variability in agricultural

TFP. The scale of the population impacts with our baseline assumptions goes into the tens of

millions, eventually even more than that. We emphasize that, in our model, this effect goes

through lower fertility, as negative agricultural productivity shocks increase the relative cost of

food. In other words, our model captures a socially optimal adjustment of population that is

based on a constant mortality assumption. It is nevertheless indicative of a large food security

issue, as in the real world smooth forward looking adjustments are unlikely.

We close by highlighting that our global view of the problem hides distributional issues.

Most famines and environmental degradation occur at the local level, and in particular in deve-

loping countries. Agricultural TFP shocks may disproportionately affect low-income countries.

Similarly, since land conversion will most likely occur in developing countries, technological

uncertainty may exacerbate further land conversion and biodiversity losses there.
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Appendix Estimated parameters and model fit

The vector of parameters that minimizes equation (10) is reported in table A1, and the resulting

trajectories are reported in figure A1, comparing observations over the period from 1960 to

2010 with simulations from the estimated model. As evident from the figures, the estimated

model provides a very good fit to recent history, and the relative squared error (10) across all

variables is 3.52 per cent. The size of the error is mainly driven by the error on output (3.3 per

cent), followed by land (0.1 per cent) and population (0.03 per cent). Figure A1 also reports the

growth rate of population, which is not directly targeted by the estimation procedure, showing

that the simulated trajectory closely fits the observed dynamics of population growth.

Table A1: Estimation results: Parameters

Parameter Description Estimates

µmn Elasticity of labor in manufacturing R&D 0.581
µag Elasticity of labor in agricultural R&D 0.537
� Labor productivity parameter in child rearing 0.153
⇣ Elasticity of labor in child rearing 0.427
! Elasticity of labor productivity in child rearing w.r.t. technology 0.089
 Labor productivity in land conversion 0.079
" Elasticity of labor in land-conversion 0.251
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Figure A1: Estimation of the model 1960 – 2010 (source: Lanz et al., forthcoming).
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