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ABSTRACT 

__________________________________________________ 

After the last major financial crisis of 2017-2018, a number of systemic 

risk measures have been proposed in the financial literature as attempts 

for quantifying the magnitude of the financial system distress. In this 

article, we suggest the construction of an overall meta-index for the 

measurement of systemic risk based on a Sparse Principal Component 

Analysis of main systemic risk measures, which ultimately aims to 

provide an index with a more stable dynamic, which is explicitly linked 

to severe economic recessions. 

 

 

 

 

 

1. Introduction 

 

The last severe financial crisis of 2007-2008 was characterized both by the speed of 

financial contagion and by its strong negative impact on the real sector - with a consequent 

contraction of economic activity in many developed countries. The subsequent European debt 

crisis have compelled a number of Eurozone members to increase their public spending in order 
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to support their respective banking sectors. Under this severe budgetary pressure, some 

countries encountered difficulties to raise the funds needed to finance their increasing debt, and 

almost brought the Eurozone on the brink of collapse. In this context, identifying the most 

systemically important countries has become crucial (Cf. Popescu and Turcu, 2017). If the 

period preceding the financial crisis was by far characterized by a lack of suitable risk 

indicators, both practitioners and academics have tried to propose measures able to capture the 

risk accumulation since the outbreak of the crisis, whilst the first focus was mainly put on 

systemic risk measures. One way in which the present systemic risk measures can be classified 

is based on data used to compute them. We can distinguish between, on the one hand, market 

based measures and, on the other hand, measures which involve confidential information related 

to the balance sheet and to the financial position of each institution. While the latter are only 

available to regulators, the former have the advantage of being accessible to all interested 

parties: academics, practitioners and regulators. However, one of the major issues in financial 

economics as a result of these turbulent events was, first, to try to agree on one (or more) 

definition(s) of systemic risk, multifaceted by nature, when emphasizing one or another 

essential characteristic of financial institutions. Indeed, the intention was to highlight the 

different aspects of this risk: size of the financial institution in shock, leverage risk and extreme 

market liquidity shortage phenomenon of interconnections between actors and contagion shock, 

have been identified among the key elements of a systemic crisis. Once these aspects were 

identified, the objective was to build relevant analysis tools for measuring the systemic risk. 

Many authors have proposed measures reflecting both the general state of the system to 

distinguish the main institutions contributing to the overall risk. The academic literature linked 

to systemic risk measurement is still growing with recently published measures (e.g. Adrian 

and Brunnermeier, 2016; Pourkhanali et al., 2016; Brownlees and Engle, 2017), and is also 

accompanied the new imperative by banking regulatory authorities, proposing a number of 

systemic risk or metric measurements to be followed (Cf. Benoit et al., 2013). Indeed, there are 

two types of measures: the individual measures that assess systemic risk institutions in isolation 

and those that are designed to measure the overall systemic risk. In the first category, we can 

find for instance the Conditional Value-at-Risk (CoVaR) of Adrian and Brunnermeier (2016), 

the Marginal Expected Shortfall (MES) of Acharya et al. (2013) and Brownlees and Engle 

(2017), and the SRISK by Acharya et al. (2012) and Brownlees and Engle (2017). In the second 

group of measures, we find, among the main, the Spillover Index (SI) of Diebold and Yilmaz 

(2009) and the Dynamic Causality Index (DCI) of Billio et al. (2012). 
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 However, recent works showed that the definition of a “good” measure of systemic risk 

still remains unresolved, 1) because of the observed empirical redundancies in the various 

measures of systemic risk, 2) because of the model risk associated with their estimates and 3) 

due to the absence of an objective criterion to tell us about the relevance of the different 

approaches. Thus, recent articles have focused on the implied model risk in the implementation 

of these different metrics. Daníelsson et al. (2016) and Benoit et al. (2017) show that a large 

majority of individual measures of systemic risk strongly depends upon extreme percentiles of 

returns, and therefore inheriting the risk of such uncertain quantities. Actually, model risk seems 

to be largely underestimated in practice (Boucher et al., 2014 and 2016), and it is heterogeneous 

in the different steps, leading to significant discrepancies in the rankings of systemic institutions 

(Benoit et al., 2013; Nucera et al., 2016; Kouontchou et al., 2017). Consequently, measures of 

overall systemic risk constructed as a weighted sum of individual measures are also subject to 

model risk (see Moreno and Peña, 2013). 

A solution that recently appeared in the literature on systemic risk to mitigate the model 

risk is to construct aggregate indexes from different existing metrics (e.g. Illing and Liu, 2006; 

Holló et al., 2012; Louzis and Vouldis, 2012; Giglio et al., 2016; Kouontchou et al., 2017). The 

main objective is to obtain a risk index which diversifies the model risk. As part of the 

quantification of the overall systemic risk, this approach is, in particular, adopted by Giglio et 

al. (2016) who identify an aggregate index at a given date as the common signal extracted from 

time-series of various metrics of systemic risk, recovered through a Principal Component 

Analysis (PCA). In their empirical investigations, it appears that this index predicts periods of 

sharp slowdown in economic activity - which is ultimately the economic criterion that should 

be the most important. Regarding the individual measures, Nucera et al. (2016) adopt a similar 

technical approach and they infer a rating issued from other noisy and divergent rankings of 

competing measures. Beyond the diversification of the model risk, it should be noted that the 

aggregation also allows us to synthesize the different dimensions of systemic risk (size, 

leverage, interconnections, liquidity etc.). 

 In the first step, we retain as a construction tool for the aggregate index: the “Sparse” 

Principal Component Analysis (SPCA). This method of dimension reduction, as opposed to the 

standard PCA used in Giglio et al. (2016) in the building of systemic risk indexes, allows us to 

select a predefined number of active components in the index. In this case, it has the advantage 

to retain, for the construction of the aggregated risk index, the measures that best explain some 

output targeted data observations. 
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The second step of our methodology when building an optimal Index is devoted to the 

endogenization of the smoothing parameter that governs the scarcity of the SPCA. In our case, 

the optimal value of this parameter is obtained by retaining the aggregate index that Granger 

causes extreme variations in economic activity. The inference is here performed using the 

nonparametric test of causality in extreme risks of Hong et al. (2009). This approach has the 

advantage to test for a large number of time windows in the causal relation, with higher 

discounting the longest horizons. 

 The rest of this article is organized as follows. In the next part, we present the 

construction method of a systemic risk index with, in the following part, an illustration on the 

US market. A last part is dedicated to some robustness tests, whist the ultimate section 

concludes. 

 

 

2. Using a Sparse Principal Component on Systemic Risk Measures 

  

To integrate systemic risk as another factor, complementary to the systematic and 

specific risk, it is necessary to use a precise measurement of risk. In recent years, a strong 

literature has been developed on identification of Systemically Important Financial Institutions 

by quantitative measures to characterize the conditional link between different financial 

institutions and the market as a whole. However, given the many dimensions of systemic risk, 

these individual measures hardly detect systematically the potentially systemic institutions. 

The use of factor analysis as information aggregation tool from a set of systemic risk 

measures is a new approach. Moreno and Peña (2013) use a Principal Component Analysis 

(PCA) on a set of companies for building a systemic risk index. Giglio et al. (2016) use a 

principal component analysis to build a systemic risk index and test its predictive power of 

future shocks on macroeconomic variables using quantile regression. Nucera et al. (2016) run 

principal component analysis on a set of six systemic risk measures. However, their study 

differs from Giglio et al. (2016) as they apply a PCA on the ranking of 113 companies in the 

financial sector through a series of systemic risk measures and not on a set of companies over 

a period of time as in Giglio et al. (2016) in their study from a set of 19 measures of systemic 

risk. We hereafter summarize, complement and extend the work by Giglio et al. (2016) and 

Nucera et al. (2016), mainly considering the databases first used in Brownlees and Engle (2017) 

and, secondly, by Giglio et al. (2016). 
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2.1. About Systemic Risk Measures  

 

 The financial literature has proposed numerous quantitative measures that can be used 

to identify potentially systemic institutions. We can group them into several categories. 

First, the individual systemic risk measures are defined from econometric models of specific 

risk to the institution. This is the Conditional Value-at-Risk (CoVaR) and Delta Conditional 

Value-at-Risk (ΔCoVaR) by Adrian and Brunnermeier (2016), and the Marginal Expected 

Shortfall (MES) of Acharya et al. (2013) and Brownlees and Engle (2017), and SRISK of 

Acharya et al. (2012) and Brownlees and Engle (2017), and Amihud Illiquidity Measure 

proposed by Amihud (2002). 

Secondly, other measures focus specifically on an important aspect of systemic risk, i.e. 

the level of interconnection of financial institutions or the financial system concentration. In 

this category, we select the Spillover Index (SI) by Diebold and Yilmaz (2009), the Dynamic 

Causality Index (DCI) of Billio et al. (2012), the measurement of Turbulence by Kritzman and 

Li (2010), the Absorption Ratio of Kritzman et al. (2011), and the concentration Herfindahl-

Hirschman Index. Thirdly, some macro-financial variables are generally used to complement 

the analysis, serving as leading indicators of economic activity (see Estrella and Trubin, 2006; 

Chen et al., 2009). We retain hereafter in our analysis: the Credit Default Yield Spread which 

measures the difference between the yield on corporate bonds rated BAA and the rated AAA 

by Moody's, as Chen et al. (2009) show that this variable is an aggregate measure of the risk of 

robust credit frictions (tax and liquidity) in the bond market; the TED Spread, which measures 

the difference between the LIBOR three-month rate and sovereign interest rates in three 

months: an increase of this variable is the sign that lenders expect an increase in credit risk in 

the interbank lending market; and finally the Term Spread measures the slope of the yield curve, 

and corresponds to the yield spread between 10-year Treasury bonds and three months money 

market maturities, since this variable may serve as a leading indicator of the economic activity 

(e.g. Estrella and Trubin, 2006). 

We consider also the volatility (Vol) and the Value-at-Risk (VaR) aggregated across the system 

to take into account the evolution of its variability. 

We illustrate the dynamics of these different systemic risk indicators in the following 

Figure 1 from daily data financial institutions from the US market over the period from the 

09/03/2003 to the 02/26/2016. We see in this Figure a significant increase in all global systemic 

risk measures over the period 2007-2008 which is the period of the financial crisis. Similarly, 

although a common trend seems to emerge from the dynamics of the series, there are still some 
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disparities between these measures. These differences may stem from the fact that systemic risk 

is multidimensional, each of the different metrics is modelling a specific dimension. 

This result is confirmed by the analysis of correlations between different risk measures. 

 

 
Fig. 1. Dynamics of global systemic risk measures. Note: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; 

authors' computation. These measures (without considering the macroeconomic variables) are estimated from rolling windows 

of one year. Here are presented the z-scores of these measures and are in the following order: M1: Spillover Index, M2: 

Herfindahl-Hirschman Index, M3: VaR, M4: Absorption Ratio, M5: CoVaR, M6: MES, M7: Term Spread, M8: Default Yield 

Spread, M9: CES, M10: Volatility, M11: Dynamical Causality Index, M12: SRISK, M13: Turbulence Index, M14: CoVaR, M15: 

TED Spread and M16: Amihud Illiquidity Measure. 

 

Indeed, from the matrix of the correlations presented in Appendix C, we can note that 

all correlations are statistically significant at a nominal risk level of 5%, except for the 

correlations between the Amihud Illiquidity Measure and the TED Spread and between the 
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Dynamical Causality Index and the Default Yield Spread for the Pearson correlations. The 

exception of the correlations for the Spearman correlations are between the TED Spread, the 

aggregate SRISK and the aggregate volatility, between the Turbulence Index and the 

aggregated SRISK, between the Herfindahl-Hirschman Index and the Dynamical Causality 

Index and between the aggregated CoVaR and the Dynamical Causality Index. 

The strongest correlations (above .90) are those related to global systemic risk measures 

corresponding to average data instant time-series of individual measures (CoVaR, ΔCoVaR, 

MES). It is therefore necessary to propose an indicator that integrates all dimensions of risk 

(aggregated model). 

 

 

2.2. An Aggregated Index of Systemic Risk Measures 

 

We present in this section the methodology for the construction of the aggregated index 

of overall systemic risk (see Kouontchou et al., 2017). First, we present the Sparse Principal 

Component Analysis (SPCA) approach for dimension reduction, and secondly, we present the 

optimal choice of systemic risk index through the causality test in extreme risks of Hong et al. 

(2009) for selecting the most parsimonious index. 

The PCA is a decomposition of a data set on the basis of orthogonal functions which 

are determined from the data. These functions, which are linear combinations of the original 

variables, are supposed to reproduce a large extent of the existing variability in the data, and 

they correspond to the most important main axes or components. From a statistical point of 

view, if we consider a matrix M of dimension (𝑇, 𝑝) of the initial normalized data (see Benoit 

et al., 2013 on the importance of this point in the context of detecting Systemic Important 

Financial Institutions), the first component (main axis) is denoted by a vector of dimension p 

as the solution of the following program: 

max
𝑥∈ℝ𝑝

 {𝑥′𝐴𝑥}

𝑠. 𝑡. ‖𝑥‖2 = 1,
 (1) 

where 𝐴 = 𝑇−1𝑀′𝑀 is the covariance matrix of 𝑀 of dimension (𝑝, 𝑝), 𝑀′ is its transpose, T 

the size of the sample and ∥ 𝑥 ∥2 stand for the 2-norm of vector 𝑥. 

 The first component is obtained by minimizing the empirical variance of the projected 

data in an identification constraint associated with a specific norm. The projection data on this 

component makes it possible to obtain a factor noted 𝐹 of dimension (𝑇, 𝑝), with 𝐹 = 𝑀𝑥 

whose variance, called eigenvalue, is equal to 𝜆 = 𝑇−1𝐹′𝐹, is the criterion in the optimization 
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program (1). In the construction of aggregated systemic risk indices, the index is generally 

associated with the factor 𝐹 (Moreno and Peña, 2013; Giglio et al., 2016).  

 The previous optimization program that provides the first component and the dominant 

factor has an equivalent representation in terms of linear regression (Zou et al., 2006; Shen and 

Huang, 2008). Indeed, it is shown that in the linear regression that reads:  

𝐹 = 𝑀𝛽 + 𝑈, (2) 

where the dependent variable 𝐹 (respectively, the explanatory variables 𝑀) is the dominant 

factor of the PCA (initial data matrix respectively) and 𝑈 is the error term. The normalized 

value of the Ordinary Least Square (OLS) estimator of the parameter vector 𝛽 is equal to the 

first component, that is: 

𝑥 =
𝛽̂

‖𝛽̂‖
2

, (3) 

with 
2

.  the 2-norm. 

Zou et al. (2006) propose to modify the linear regression represented by Eq. (2) in order 

to obtain the main sparse component from the expression (3). Indeed, if 𝑥𝑠 is this component, 

it is equal to:  

𝑥𝑠 =
𝛽̂𝑠

‖𝛽̂𝑠‖
2

, (4) 

where 𝛽̂𝑠 is the solution of the constrained following regression (or penalized) below: 

𝐹 = 𝑀𝛽𝑠 + 𝑈 

𝑠. 𝑡. ‖𝛽𝑠‖1 =∑|𝛽𝑗
𝑠|

𝑝

𝑗=1

≤ 𝛿. 
(5) 

The parameter 𝛿 ≥  0 defines the upper limit of norm 1 of the parameter vector 𝛽𝑠. 

Regression (5) introduced by Tibshirani (1996) is known as the Least Absolute Shrinkage and 

Selection Operator (LASSO), and its primary goal is to make a variable selection. The limit 

behaviour of this regression can be summarized as follows. When 𝛿 tends to zero, the number 

of active elements (different from zero) in 𝛽̂𝑠, and therefore in the "sparse" component 𝑥𝑠, also 

approaches zero - the degenerated limit case being when 𝛿 =  0, where 𝛽̂𝑠 and 𝑥𝑠 correspond 

to the zero vector; in the opposite case when 𝛿 tends to infinity, the regression (5) is the 

unrestricted regression (2), and 𝑥𝑠 is exactly equal to 𝑥, i.e. the main component of a 

conventional PCA and the number of active elements then takes its maximum value 𝑝. 
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3. Empirical Results 

 

We previously illustrated the dynamics of the different systemic risk measures in the 

Figure 1 from daily data financial institutions from the US market over the period from the 

09/03/2003 to the 02/26/2016. 

 

3.1. Constructing Competing Sparse Indexes of Systemic Risk Measures 

 

This method applied in our systemic risk framework has the advantage of providing a 

main component that summarizes the variability in systemic risk indicators, using only a few 

of them. Beyond the parsimony that brings the SPCA, it should be mentioned that the variable 

selection is made using the usual trade-off between bias and variance. Indeed, under the usual 

conditions of exogeneity of the error term 𝑈 in the regression (2), the estimator 𝛽̂ is unbiased. 

The additional constraint in regression (5) helps to reduce the variance of the estimator by 

introducing bias.3Therefore the main factor from a SPCA has a more stable temporal dynamic. 

As highlighted above, this property is desirable since the implementation of regulatory policies 

should not be based on noisy and erratic metrics of systemic risk. Finally, note that the dominant 

factor of the SPCA is obtained by projecting the data matrix 𝑀 on the sparse component 𝑥𝑠, 

with 𝐹𝑠 = 𝑀𝑥𝑠. 

Table 1 shows the dominant principal component derived from the SPCA methodology 

for different values of the parameter 𝛿. When 𝛿 =  1, which corresponds to the strongest 

constraint in regression (5), the number of active global systemic risk measures in the dominant 

component is equal to 𝑘 =  1, and corresponds to the M8 measure, namely the Spillover Index 

of Diebold and Yilmaz (2009). When 𝛿 increases, the constraint becomes lighter and other 

additional systemic risk measures enter into the dominant component. For illustration, when 

𝛿 =  1.933, six measures are active in the index, namely the concentration Herfindahl-

Hirschman Index, the Absorption Ratio of Kritzman et al. (2011), the Spillover Index of 

Diebold and Yilmaz (2009), the aggregated MES4 by Acharya et al. (2010), the aggregated 

                                                 
3. Here we find a compromise between bias and variance in the so-called regression “RIDGE”. The arbitrage 

nonetheless addresses the norm 1 and not the norm 2 of the “LASSO” regression. 
 
4 For some authors, and since its definition relies on the effect on a financial institution of an extreme market 

movement, the MES should not be taken as a systemic risk measure... We see here that the information content of 

such a statistic is singular and different from the one in other measures. 
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Value-at-Risk and the aggregated CoVaR of Adrian and Brunnermeier (2016). For the highest 

value, all measures are active in the dominant component, and it is the first component of a 

classic PCA. Note that the latest systemic risk measure to be active in component is the Amihud 

Illiquidity Measure. 

 

 Table 1 

 Variable decomposition of the sparse principal components 
 

 

Figure 2 shows the dynamics of all 16 aggregate indexes of systemic risk obtained 

through the analysis of the main sparse components for a given value of the truncation 

parameter 𝛿, varying from 𝛿 =  1.000 to 𝛿 =  2.388. For the first value, when 𝛿 =  1.000, 

the aggregate index is nothing else than the Spillover Index of Diebold and Yilmaz (2009) and 

is the most stable. For the last value, where 𝛿 =  2.388, the aggregate index corresponds to the 

aggregation of all systemic risk measures (the 16 measures are included in the analysis). The 

dynamics of the other indices are between these two limit case indexes. Indeed, the addition of 

any extra factor in the index increases its variability, which will be between the variability of 

the two indexes included in the limiting cases as displayed in the following Figure. 

 

δ 1.00 1.30 1.40 1.71 1.83 1.93 2.01 2.02 2.05 2.12 2.139 2.19 2.24 2.30 2.32 2.38 

Idk Id1 Id2 Id3 Id4 Id5 Id6 Id7 Id8 Id9 Id10 Id11 Id12 Id13 Id14 Id15 Id16 

k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16 

M1 1.00 .92 .91 .83 .79 .75 .73 .73 .72 .70 .70 .70 .70 .69 .69 .68 

M2 .00 .39 .41 .49 .51 .53 .54 .54 .54 .55 .55 .55 .55 .56 .57 .57 

M3 .00 .00 .08 .23 .24 .23 .20 .19 .19 .16 .15 .15 .13 .10 .08 .05 

M4 .00 .00 .00 .17 .24 .30 .34 .34 .35 .38 .39 .40 .40 .40 .41 .41 

M5 .00 .00 .00 .00 .05 .10 .13 .13 .14 .14 .14 .13 .12 .07 .06 .07 

M6 .00 .00 .00 .00 .00 .02 .06 .06 .06 .05 .04 .05 .05 .04 .04 .05 

M7 .00 .00 .00 .00 .00 .00 .02 .02 .03 .04 .05 .05 .06 .06 .06 .07 

M8 .00 .00 .00 .00 .00 .00 .00 .00 .01 .03 .04 .05 .05 .07 .07 .08 

M9 .00 .00 .00 .00 .00 .00 .00 .00 .01 .05 .06 .05 .06 .06 .05 .05 

M10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 .03 .04 .08 .10 .06 

M11 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .04 .06 .06 .07 

M12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .03 .04 .05 .06 

M13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .03 .03 .04 

M14 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .06 .05 

M15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .04 

M16 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 
Note: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. M1 to M16 represent the 16 systemic 

risk measures and are in the following order: M1: Spillover Index, M2: Herfindahl-Hirschman Index, M3: VaR, M4: Absorption 

Ratio, M5: CoVaR, M6: MES, M7: Term Spread, M8: Default Yield Spread, M9: CES, M10: Volatility, M11: Dynamical Causality 

Index, M12: SRISK, M13: Turbulence Index, M14: CoVaR, M15: TED Spread and M16: Amihud Illiquidity Measure. 
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Fig. 2. Dynamics of the various SPCA indexes (as functions of δ). Note: Bloomberg, daily data from the 09/03/2003 to the 

02/26/2016; authors' computation. Are presented the dynamics of all the aggregate indexes obtained from SPCA for a specific 

value of δ. 

 

Figure 3 below, displays the dynamics of the SPCA and PCA cases of the 16 factors (or 

aggregate indexes) from the sparse components of Table 1. Indeed, although the dynamics of 

the two aggregate indices are very similar, the temporal variability is not equal. The most stable 

index obviously corresponds to the case with a variance equal to 1. This index is identical to 

the Spillover Index of Diebold and Yilmaz (2009). The most volatile aggregate index is 

obtained for 𝛿 =  2.388 and is equal to the dominant factor of a conventional PCA, with an 

estimated variance of 3.195. Other unrepresented aggregated indexes show variances between 

these two values. We thus find, with this analysis, the primary objective of the SPCA, namely 

the temporal stabilization of factors, is to define our aggregate index. However, as already 

mentioned, this stabilization is achieved via a bias-variance arbitrage, and thus induces a 

decrease in the quality of the representation (explained variance).  
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Fig. 3. Dynamics of the SPCA and PCA indexes. Note: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' 

computation. Are plotted the two limit cases of the set of indexes. The optimal choice is in bold and the index obtained by the 

PCA is in dashed line.  

 

The following section is dedicated to the optimal choice of the aggregate index of 

systemic risk among the 16 competing indices which are all special combinations of our 16 

systemic risk measures. 

 

 

3.2. Optimal Choice within the Set of the Competing Sparse Principal Components 

 

Our aim in this section is to assess to what extent the aggregate index can be considered 

a leading indicator of economic activity. This approach is the one used by Giglio et al. (2016) 

to measure the predictive power of their aggregate index extracted from a classical PCA. 

Indeed, these authors, via a quantile regression, test whether extreme variations in the industrial 

production is explained by the lagged value of the index of systemic risk - compared to a non-

conditional specification excluding the index. 

The method we adopt in this section is, however, different, in the sense that we assess 

to what extent the positive extreme movements of the aggregate index of systemic risk (when 

systemic risk is high) Granger-cause the negative extreme movements in the industrial 

production. As highlighted above, this approach is consistent with the intuition that only the 

extreme movements of the aggregate index can explain systemic events, inducing strong 
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slowdowns in the future economic activity. We use for this purpose the causality test in 

distributions tails developed by Hong et al. (2009). 

For a brief description of the test, let us note𝑦1,𝑡 = Δ𝑃𝑡 the monthly change in industrial 

production, and 𝑄1,𝑡(𝛼; 𝜃1) the quantile at the order 𝛼 of the distribution of 𝑦1,𝑡, with 𝜃1 a vector 

of parameters associated with the specification of the dynamic of 𝑦1,𝑡. Here we follow Giglio 

et al. (2016) by setting 𝛼 to 20%. For monthly data, note here this is a reasonable choice since 

it allows to have samples with limited sizes and a significant number of observations in the left 

tail of the distribution 𝑦𝑡. Let 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) the dummy variable defined as: 

𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) = {
1 𝑖𝑓𝑦1,𝑡 ≤ 𝑄1,𝑡(𝛼; 𝜃1)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
.  

(6)
 

 This variable equals 1 when the change in industrial production is extreme and negative, 

corresponding to a severe contraction of economic activity. In the same manner, let us denote 

𝑦2,𝑡 = −Δ𝐹𝑡
𝑠 the opposite of the monthly change in the aggregate index of systemic risk5 

obtained via the PCA « sparse » methodology, and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) 
the dummy variable defined 

as: 

𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) = {
1 𝑖𝑓𝑦2,𝑡 ≤ 𝑄2,𝑡(𝛼; 𝜃2)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
.  

(7)
 

 Note that this variable equals 1 when the change in aggregated systemic index is extreme and 

positive indicating a systemic event. The null hypothesis testing in Hong et al. (2009) is: 

𝐸[𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1)|Ω𝑡−1] = 𝐸[𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1)|Ω1,𝑡−1], (8)
 

wherein the sets of information on the date t-1 are defined respectively by: 

{
Ω𝑡−1 = {(𝑦1,𝑠, 𝑦2,𝑠), 𝑠 ≤ 𝑡 − 1 }

Ω1,𝑡−1 = {𝑦1,𝑠, 𝑠 ≤ 𝑡 − 1} .
 

(9)
 

 Under the null hypothesis, the positive extreme movements of the aggregate index of systemic 

risk have no predictive power on the negative extreme movements in industrial production. The 

test statistic proposed by the authors depends on a weighted sum of the estimated correlations 

between 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) where 𝜃1 and 𝜃2 are consistent estimators of 𝜃1and 𝜃2. 

This weighted sum is defined by: 

𝑍 = 𝑇∑𝜅2(𝑗/𝑑)𝜌̂(𝑗)

𝑇−1

𝑗=1

, (10)
 

 

                                                 
5. Monthly data for each aggregate index are obtained as averages of daily data of Figure 2. In total, we have 130 observations 
for competitor aggregate indices, and 130 monthly observations for industrial production. 
 



J.-C. Garibal, B. Maillet                                                                             

14 

 

With the function 𝜅(. ) of the type decreasing kernel6, 𝑑 the truncate parameter7 and 𝜌̂(𝑗) the 

cross-correlation of order j between 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) equals to: 

𝜌̂(𝑗) =
𝛾̂(𝑗)

𝑠̂1𝑠̂2
, (11)

 

where 𝑠̂1 and 𝑠̂2 refer to the standard deviation of 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) respectively 

and 𝛾̂(𝑗) cross-covariance of order 𝑗 defined by: 

𝛾̂(𝑗)

{
 
 

 
 
𝑇−1 ∑ {[𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) − 𝜋̂1][𝐻𝑖𝑡2,𝑡−𝑗(𝛼; 𝜃2) − 𝜋̂2]}

𝑇−1

𝑡=𝑙+𝑗

 𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 𝑇 − 1

𝑇−1 ∑ {[𝐻𝑖𝑡1,𝑡+𝑗(𝛼; 𝜃1) − 𝜋̂1][𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) − 𝜋̂2]}

𝑇−1

𝑡=𝑙−𝑗

 𝑓𝑜𝑟 1 − 𝑇 ≤ 𝑗 ≤ 0,

 (12)
 

with 𝜋̂1 and 𝜋̂2 the empirical means of 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) respectively. We 

therefore denote that the particularity of the 𝑍 statistic is the fact that all possible lags are 

considered, with a discount of the most distant lags. Also, in the current context of applying 

this test, the inclusion of a high number of lags, helps to capture the stronger or weaker inertia 

in the reaction of the economy to a systemic event. Under the null hypothesis of no causality in 

extreme movements, Hong et al. (2009) demonstrate that: 

𝑈 =
𝑍 − 𝐶𝑇(𝑑)

[𝐷𝑇(𝑑)]
1/2
, (13) 

follows a standard normal distribution, with: 

𝐶𝑇(𝑑) = ∑(1 − 𝑗/𝑇)𝜅2(𝑗/𝑑)

𝑇−1

𝑗=1

, (14) 

and:
 

𝐷𝑇(𝑑) = 2∑(1 − 𝑗/𝑇)(1 − (𝑗 + 1)/𝑇)

𝑇−1

𝑗=1

𝜅4(𝑗/𝑑). (15) 

The U-statistic is therefore used for inference. The Monte Carlo simulations carried out 

by Hong et al. (2009) show that the test has good properties at a finite distance. It is important 

here to note that the minimum sample size considered by the authors in the simulations is𝑇 =

                                                 
6. We use the kernel function from Daniell that induces optimal properties for causality test. Cf. Hong et al. (2009) for further 
details. 
 
7. When this parameter d increases, the value of the function that plays in the formula (10) as weighting is higher for low 
values of j lags. 
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 500, and the minimum quantile is 5% (approximately 25 observations in the tails of 

distributions). We have here with our monthly data of the changes in industrial production and 

changes in competitors aggregated indices only 129 observations. With a 20% quantile, this 

leaves us also 25 cases. It is close to the test application conditions, namely the existence of a 

relatively not too small number of data in the tails of distributions. 

The results of causality tests for the different competing indices (denoted Id1 to Id16) are 

summarized in Table 2, for two values of truncation parameter 𝑑, ranging from 𝑑 =  10 and 

𝑑 =  25. The null hypothesis of no causality from positive and extreme monthly variations of 

each aggregate index of systemic risk to the negative and extreme monthly variations in 

industrial production, is rejected in all configurations at a nominal 5% threshold. When closely 

reading this Table, the optimal index derived from the SPCA methodology is the aggregate 

index 14. Indeed, whatever the value of 𝑑, this index appears to be the most parsimonious: it is 

constructed from only 14 systemic risk measures, and is relatively stable over time, whist it has 

the highest predictive power (high test statistic) on severe contractions in the economic activity. 

We note here the analogy between our approach to identify the optimal aggregate index and the 

traditional model selection criteria (AIC, BIC). 

 

Table 2 

Causality tests in extreme movements 

 
 

SPCA PCA 

δ 1,000 1,309 1,402 1,711 1,834 1,933 2,017 2,022 2,050 2,125 2,139 2,199 2,249 2,304 2,327 2,388 

Idk Id1 Id2 Id3 Id4 Id5 Id6 Id7 Id8 Id9 Id10 Id11 Id12 Id13 Id14 Id15 Id16 

k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16 

U(10) 2.91 1.13 1.13 4.99 3.83 3.83 3.83 3.83 3.83 4.43 4.43 5.95 5.95 9.08 6.83 6.83 

                 

U(25) 5.81 1.52 1.52 5.70 3.71 3.71 3.71 3.71 3.71 4.92 4.92 7.31 7.31 11.22 7.67 7.67 

Note: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. The Table shows the value of the 

U(. ) statistic of Hong et al. (2009) in Eq. (13) for inference on causality from monthly variations of each aggregate index to 

the monthly change in industrial production. Id1 to Id16 correspond to the various aggregated indices of systemic risk. The 

threshold for significance at nominal risk level of 5% is 1.96. 

 

The optimal aggregate index (that we are going to name the ISRM from now on) is thus, 

based on the results of Table 2, entirely determined by: the Default Yield Spread, the Term 

Spread, the Herfindahl-Hirschman Index, the Absorption Ratio by Kritzman et al. (2011), the 

Spillover Index by Diebold and Yilmaz (2009), the SRISK by Acharya et al. (2012) and 

Brownlees and Engle (2017), the Aggregated Vol, the MES of Acharya et al. (2010), the 
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Component Expected Shortfall of Banulescu and Dumitrescu (2015), the Value-at-Risk and the 

CoVaR and the CoVaR of Adrian and Brunnermeier (2016), the Dynamical Causality Index 

of Billio et al. (2012) and the turbulence index of Kritzman and Li (2010). 

 The largest contributor to the aggregate index is the Spillover Index of Diebold and 

Yilmaz (2009) with a weight of .69; conversely, the one with the lowest impact is the 

Turbulence index of by Kritzman and Li (2010) with a weight of .03. Finally, three 

complementary dimensions of systemic risk are taken into account in our aggregate index: the 

liquidity (Amihud Illiquidity Measure), the contagion effect measure (the Spillover Index) and 

the concentration risk component (measured by the Herfindahl-Hirschman Index), in addition 

to the size of the institution and leverage effect encompassed in the SRISK. 

In the following, we continue our analysis on the relationship between the GDP and the 

ISRM to see if the ISRM can explain future variations of the GDP. We also conduct the same 

analysis between the market index and the ISRM using the indexes obtained by SPCA and by 

PCA.  

We start by computing quarterly series of the ISRM, the GDP and the market index (the 

S&P500 here). With Ordinary Least Squares (OLS) and Quantile Regression (QR), we estimate 

the relationship between the GDP/market index and the systemic risk index (lagged) from the 

Q1-06 to the Q4-15 following the equation: 

𝑦̇𝑡+1 = 𝜇 +  𝜆𝐼𝑆𝑅𝑀̇ 𝑡 + 𝜉𝑡 , (16) 

where 𝑦̇𝑡+1 = (𝑦𝑡+1 − 𝑦𝑡/𝑦𝑡) is either the variation rate of the macroeconomic variable or later 

the variation rate of the market index, 𝐼𝑆𝑅𝑀̇ 𝑡 = (𝐼𝑆𝑅𝑀𝑡 − 𝐼𝑆𝑅𝑀𝑡−1/𝐼𝑆𝑅𝑀𝑡−1)is the variation 

rate of the systemic risk index and 𝜉𝑡 is the residual at time 𝑡. 

Figure 4 shows the dynamic of the 𝑅² for the relationship between the one ahead period 

GDP and systemic risk index (lagged) using Ordinary Least Squares (OLS) and Quantile 

Regression (QR) at the present period. The explicative power seems to increase during the 

financial crisis of 2008-2009. We can distinguish three change in regime periods along the 

entire sample. Here are plotted the two 𝑅² dynamics that represents in fact the two estimation 

methods (OLS) and (QR) for the index obtained by Sparse-Principal Component Analysis 

(SPCA).  
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Fig. 4. R² dynamic for the GDP-ISRM relationship. Note: Bloomberg, quarterly GDP series from the Q1-06 to the Q4-

15; authors' computation. The Figure shows the dynamic of the 𝑅² for the relationship between GDP and systemic risk 

index using ordinary least squares (OLS) and Quantile Regression (QR) with a 20th percentile for a given 𝑡+1 horizon 

(dynamic evolution of the link according to t); 

 

We continue our analysis by looking for what is the better forecast horizon of the ISRM 

to predict changes in the GDP growth rate. Figure 5 represents the adjusted 𝑅² of the 

relationship between GDP and ISRM at the 𝑡 + ℎ period ahead from 1 to 10 periods. Here, the 

𝑅² seems to goes down slowly as the forecast horizon increases. 

 

 
Fig. 5. R² dynamic for the GDP-ISRM relationship with respect to t+h period ahead. Note: Bloomberg, quarterly GDP 

series from the Q1-06 to the Q4-15; authors' computation. The Figure shows the dynamic of the 𝑅² for the relationship 

between GDP and systemic risk index using ordinary least squares (OLS) and Quantile Regression (QR) with a 20th 

percentile for a given 𝑡+ℎ horizon (mean general relation according to ℎ). 
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4. Robustness Tests 

 

This section is devoted to the robustness check of the build method of the aggregated 

index based on systemic risk measures.  

To check the robustness of our approach, we first compared the loadings obtained by the 

SPCA with the loadings obtained by a simple Ordinary Least Squares (OLS) regression of this 

component on matrix of systemic risk measures. We find also similar weights. However, 

regressing successively this component by adding one by one the explicative variable (in the 

order entry or not presented in Table 2), allows us to find similar weights again. 

Furthermore, a backward regression based on Student statistics corrected for the 

coefficients attached to the regression variables, by adding (removing) the variables with 

respect to their significance levels gives similar coefficients and the same order of selection of 

the variables in the global indices. 

In addition to the work of Kouontchou et al. (2017), we propose to test comparatively other 

similar methods to construct the aggregate index by considering two other types of similar 

penalized regressions known as "RIDGE" and "Elastic-net". Hastie et al. (2015) recall the 

properties of these regressions and compare them with the "LASSO" regression and its 

generalizations. The constraint or penalty of the so-called "RIDGE" regression is no longer 

based on the norm 1 as in the case of the "LASSO" regression, but on the norm 2 of the 

parameter vector 𝛽𝑠. Keeping the same target equation for the regression as in (5), the constraint 

changes into: 

𝑠. 𝑐. 𝑃(𝛽𝑠) ≡ ‖𝛽𝑠‖2 = ∑ (𝛽𝑗)²
𝑝
𝑗=1 ≤ 𝛿  , (17) 

with ‖. ‖2 the 2-norm. 

The second penalized regression that we take into account is called "Elastic-net". This 

regression is a combination of the penalized regressions "LASSO" and "RIDGE" and, using the 

same objective regression as in (5), the constraint is now reading: 

𝑠. 𝑐. 𝑃(𝛽𝑠) ≡
1−𝛼

2
‖𝛽𝑠‖2 + 𝛼‖𝛽

𝑠‖1 = ∑ [
1−𝛼

2
(𝛽𝑗)

2
+ 𝛼|𝛽𝑗

𝑠|] ≤ 𝛿  
𝑝
𝑗=1 , (18) 

with 𝛼 the smoothing parameter to balance both penalties expressed in the norms 1 and 2 of the 

parameter vector 𝛽𝑠. In the extreme case where 𝛼 = 1, the penalty 𝑃(𝛽𝑠) is reduced to the 
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constraint on the norm 1 of the parameter vector 𝛽𝑠, returning to the "LASSO" regression. In 

the other extreme case where 𝛼 = 0, the constraint 𝑃(𝛽𝑠) is just reduced on the constraint on 

the norm 2 of the parameter vector 𝛽𝑠 which corresponds to the "RIDGE" regression. 

We compare our results using successively these three penalized regressions, switching 

among the norm 1 (LASSO) to the norm 2 (RIDGE) and a combination of both (Elastic-net).  

 

Table 3 

Comparison of the Id14 indices according to three penalized regressions  

 LASSO (norm 1) Elastic-net (norms 1 and 2) RIDGE (norm 2) 

Indices Id14 Id14 Id14 

𝛅 2.30 2.30 2.30 

M1 .6931 .6931 .6932 

M2 .5606 .5606 .5606 

M3 .0983 .0981 .0980 

M4 .4039 .4039 .4039 

M5 .0683 .0686 .0689 

M6 .0434 .0439 .0443 

M7 .0632 .0632 .0632 

M8 .0654 .0654 .0654 

M9 .0569 .0566 .0563 

M10 .0829 .0828 .0827 

M11 .0559 .0558 .0558 

M12 .0375 .0375 .0375 

M13 .0268 .0268 .0268 

M14 .0480 .0478 .0477 

M15 .0000 .0000 .0000 

M16 .0000 .0000 .0000 

U(10) 9.0752 9.0752 9.0752 

U(25) 11.2200 11.2200 11.2200 

Note: Bloomberg, daily data from the 09/02/2003 to the 26/02/2016 for a set of 95 financial institutions; authors' computation. 

The table shows the comparison of the optimal index among the 3 approaches: LASSO, Elastic-net and RIDGE for the loadings 

and the statistic of Hong et al. (2009). The first line gives the value of the parameter δ. The 16 following lines give the loadings 

of the 16 measures M1 to M16 in this order: M1: Spillover Index, M2: Herfindahl-Hirschman Index, M3: VaR, M4: Absorption 

Ratio, M5: CoVaR, M6: MES, M7: Term Spread, M8: Default Yield Spread, M9: CES, M10: Volatility, M11: Dynamical Causality 

Index, M12: SRISK, M13: Turbulence Index, M14: CoVaR, M15: TED Spread and M16: Amihud Illiquidity Measure. The last 

two lines give the values of the statistic U of the Hong et al. (2009) for a parameter d = 10 and d = 25. 

 

Given the results in this Table 3, these8 are very similar whether in the composition of the 

optimal index or for the test statistic Hong et al. (2009). We conclude that the three approaches 

yield very similar results and confirm the optimal choice of the Id14 index. The same systemic 

                                                 
8 As before, we want to know if the index is optimal for a set of values 𝑑 =  10 to 𝑑 =  25 according to the three 

penalized regressions. The results confirm the choice of the Id14 index for the three penalized regressions. 
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risk measures are active in the composition of the index with small differences in their loadings 

regarding the three approaches while the Hong et al. (2009) U-statistics are the same. 

Table 4 provides the number of significant systemic risk measures based on the Kaiser 

criterion and also the rankings of the Idk indices in terms of parsimony according to different 

information criteria: Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC) and Schwarz Information Criterion (SIC) and according to the U-statistic of the test of 

Hong et al. (2009) for the three penalized regressions: "LASSO", "Elastic-net" and "RIDGE". 

As expected, the ranking according to the U-statistic of the test of Hong et al. (2009) highlights 

the optimal index obtained previously regardless of the type of penalized regression used. 

 

Table 4 

Comparison of the Id14 indices according to various parsimony criterions 

Idk Id1 Id2 Id3 Id4 Id5 Id6 Id7 Id8 Id9 Id10 Id11 Id12 Id13 Id14 Id15 Id16 

LASSO (norm 1) 

Kaiser 1 2 2 4 4 4 5 5 5 5 5 4 3 3 3 3 

                 
AIC 7 4 12 1 6 9 10 8 15 13 2 16 5 11 14 3 

BIC 7 4 12 1 6 9 10 8 15 13 2 16 5 11 14 3 

SIC 7 4 12 1 6 9 10 8 15 13 2 16 5 11 14 3 

                 
U(10) 6 15 16 7 10 11 12 13 14 8 9 4 5 1 2 3 

U(25) 6 15 16 7 10 11 12 13 14 8 9 4 5 1 2 3 

Elastic-net (norms 1 and 2) 

Kaiser 1 2 2 4 4 4 5 5 5 5 5 4 3 3 3 3 

                 
AIC 9 4 12 1 5 7 10 8 15 13 2 16 6 11 14 3 

BIC 9 4 12 1 5 7 10 8 15 13 2 16 6 11 14 3 

SIC  9 4 12 1 5 7 10 8 15 13 2 16 6 11 14 3 

                 
U(10) 6 15 16 7 10 11 12 13 14 8 9 4 5 1 2 3 

U(25) 6 15 16 7 10 11 12 13 14 8 9 4 5 1 2 3 

RIDGE (norm 2) 

Kaiser 1 2 2 4 4 4 5 5 5 5 5 4 3 3 3 3 

                 
AIC 10 4 12 1 6 9 7 8 15 13 2 16 5 11 14 3 

BIC 10 4 12 1 6 9 7 8 15 13 2 16 5 11 14 3 

SIC 10 4 12 1 6 9 7 8 15 13 2 16 5 11 14 3 

                 
U(10) 6 15 16 7 10 11 12 13 14 8 9 4 5 1 2 3 

U(25) 6 15 16 7 10 11 12 13 14 8 9 4 5 1 2 3 

Note: Bloomberg, daily data from the 09/02/2003 to the 26/02/2016 for a set of 95 financial institutions; authors' computation. 

The table shows the comparison of the optimal index among the 3 approaches: LASSO, Elastic-net and RIDGE. In each one 

of the three parts of the Table, the first line gives the number of components with respect to the Kaiser criterion, the next three 

lines give the ranking of the 16 indices according to the AIC, BIC and SIC criterions, At the end of each part, the last two lines 

give the values of the U statistic of the Hong et al. (2009) test for a parameter d = 10 and d = 25. Bold values indicate the 

best choice for each criterion and the values for the optimal index according to the Hong et al. (2009) test. 
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The number of measures respecting the Kaiser criteria in the optimal index (according to 

the parsimony criterions AIC, BIC and SIC) is 4, highlighting the importance of the following 

measures in the construction of the index: M1: Spillover Index, M2: Herfindahl-Hirschman 

Index, and M4: Absorption Ratio which takes increasing importance at the expense of the M3 

measure corresponding to the VaR which gradually loses importance in the composition of the 

index when the number of active measures increases, reflecting a selection in the variability of 

our set of measures in order to take into account the different aspects of systemic risk since the 

risk of extreme loss linked to the definition of the VaR is also found in other measures present 

in the optimal index. 

The parsimony criterions confirm this aspect in terms of index rankings. The optimal index 

according to the AIC, BIC and SIC criteria is Id4 while the least parsimonious is Id12. Thus, the 

criterion of Hong et al. (2009) tends to favor a less parsimonious index (Id14), whereas the usual 

information criteria would lead us (all unanimously moreover) to consider simpler models (such 

as Id4 or Id11). 

Moreover, taking into account the aggregation of all the main components as the target of 

the penalized regression gives similar results in terms of weightings in the composition of the 

index, in terms of values of Hong et al. (2009) test and in terms of the choice of the model and 

the variables to be retained which are identical. 
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Conclusions 

 

This article presents an aggregated measure of global systemic risk. The rationality of the 

exercise lies in the multiplicity of systemic risk indicators introduced in the literature since the 

last global financial crisis, and the discrepancies between them. The latter arises from the fact 

that each metric evaluates a particular facet of systemic risk, but also is due to the model risk 

inherent in their estimation. 

The proposed modelling methodology is based on the Sparse Principal Component Analysis 

(SPCA), which, in contrast to conventional PCA, allows us to select a reduced number of 

systemic risk measures for the construction of the aggregate index. As a result, the obtained 

index is more parsimonious and has, by construction, a more stable dynamic over time. 

From the results obtained using US data, it appears that the optimal index thus created is in fact 

less volatile than that based on the traditional PCA used in previous studies. Moreover, it 

appears that positive extreme movements of the index are advanced predictors of a sudden 

severe slowdown in economic activity. 

In terms of our main object of study - the overall systemic risk, we can see from the common 

characteristics of 1) the overall evolution of the various measures of systemic risk, 2) that of 

the indices, and 3) that of the optimal index proposed in this article: a strong upward trend in 

systemic global risk prior to the 2007-2008 crisis (as a precursor to a growing risk phenomenon, 

the result of which will be a major financial crisis and affecting the real economy), a peak in 

late 2008, before a relatively rapid decline at the end of the crisis, leaving place to some 

stabilization of total risk in recent years but still at a higher level than the crisis. 

Several extensions of this work can be envisaged. First, the use of an out-of-sample analysis 

(although difficult given the available samples) could be used to confirm the results obtained in 

sample. Secondly, applying the methodology to other (European) data would make it possible 

to assess the robustness of the US results and the differences in responses to the latest crisis 

periods in Europe (Cf. Ben Bouheni and Hasnaoui, 2017). Finally, our methodology does not 

prevent to take into account of new risk measures. Finally, a regular monitoring of the index of 

systemic risk measures would undoubtedly help to assess market conditions and the dynamics 

of the overall systemic risk.
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Appendices 

 

Appendix A: The main systemic risk measures 

 

This appendix presents the details of the various systemic risk measures used in this 

study except for the macro financial variables. For the individual systemic risk measures 

indexed by 𝑖, a global measure is derived: it corresponds to the cross sectional mean of the 

individual measures at time 𝑡. The description order is deduced here by the entry order of the 

systemic risk measures in the composition of the index when using the SPCA (see Table 2). 

The measures: M7: Term Spread, M8: Credit Default Yield Spread and M15: TED Spread 

complete the listed ones below. 

 

 Measure 1 (M1), Spillover Index (SI): this index proposed by Diebold and Yilmaz 

(2009), aggregates the contribution of each variable to the error total variance forecast on the 

returns. It quantifies the degree of contagion in the system and is expressed as a 𝑉𝐴𝑅 of order 

𝑝 for 𝑁 variables to forecast 𝐻 periods ahead as follow:  

 

𝑆𝐼𝑡 =

∑ ∑ 𝑎ℎ,𝑖𝑗
2𝑁

𝑖,𝑗=1
𝑖≠𝑗

𝐻−1
ℎ=0

∑ 𝑡𝑟𝑎𝑐𝑒(𝐴ℎ𝐴ℎ
′ )𝐻−1

ℎ=0

×100 , 
(A1) 

 

with 𝐴ℎ the matrix of contributions of each financial institution from their returns in the VAR(p) 

framework with the 𝐴ℎ element denoted 𝑎ℎ,𝑖𝑗 is the contribution to the variance of the institution 

𝑖 by the institution 𝑗. The numerator is the sum of these contributions on each forecast periods 

ahead represents the total spillover in the system. The denominator corresponds to the total 

variance of the forecast error; as an illustration, for ℎ = 0 and 𝑖, 𝑗 = 1,2, then 𝑎0,11
2 + 𝑎0,12

2 +

𝑎0𝑛21
2 + 𝑎0,22

2 = 𝑡𝑟𝑎𝑐𝑒(𝐴0𝐴0
′ ). 

 

 Measure 2 (M2), Herfindahl-Hirschman Index (HHI): is an index quantifying the 

concentration in the system. It captures the potential fragility of the system from its 

concentration and the threat of the defaults of the largest companies. It is defined as the sum of 

the squared market values out of the squared sum of these same market values such as: 

 

𝐻𝐻𝐼𝑡 = 𝑁
∑ (𝑀𝐸𝑖,𝑡)

2𝑁
𝑖=1

(∑ 𝑀𝐸𝑖,𝑡
𝑁
𝑖=1 )

2 , (A2) 

 

with 𝑀𝐸𝑖,𝑡 the market value of the institution 𝑖 at time 𝑡 and 𝑁 the number of institutions. 

 

 Measure 3 (M3), Value-at-Risk (VaR): is the Value-at-Risk of the system or for a 

market index. It is the maximal potential loss for a given probability on a time horizon and is 

defined as: 

     titi VaRr ,,Pr , (A3) 

with 𝑟𝑖,𝑡 returns of the institution 𝑖 at time 𝑡 for a given risk level 𝛼. 



J.-C. Garibal, B. Maillet                                                                             

26 

 

 

 Measure 4 (M4), Absorption Ratio (AR): proposed by Kritzman et al. (2011), it 

measures the tendency of the markets to co-move in the same way and is written as follow: 

 

𝐴𝑅𝑡 =
∑ 𝜎𝐸𝑗,𝑡

2𝐽
𝑗=1

∑ 𝜎𝑎𝑖,𝑡
2𝑁

𝑖=1

 , (A4) 

 

with 𝐽 the number of eigen vectors, 𝜎𝐸𝑗,𝑡
2  the variance of the eigen vector j and 𝜎𝑎𝑖,𝑡

2  the variance 

of the asset 𝑖 at time 𝑡. The Eigen values and vectors are obtained from the variance covariance 

matrix (VCV) of the 𝑁 asset returns at time 𝑡. Only the 𝐽 largest eigen values are summed to 

get the numerator while the denominator is the 𝑡𝑟𝑎𝑐𝑒 of the VCV matrix. 

 

 Measure 5 (M5), Conditional Value-at-Risk (CoVaR): introduced by Adrian and 

Brunnermeier (2016), it corresponds to the 𝑉𝑎𝑅 of the system (or simply the 𝑉𝑎𝑅 of the 

market index), conditional on institutions being under distress. If one denotes 𝑟𝑚,𝑡 the 

market returns, then we have: 

       titititm VaRrCoVaRr ,,,,Pr , (A5) 

with 𝑟𝑖,𝑡, the returns of the institution 𝑖 and  tiCoVaR ,
 the CoVaR of the institution 𝑖 at time 

𝑡 for a given risk level 𝛼. 

 

 Measure 6 (M6), Marginal Expected Shortfall (MES): is proposed by Acharya et al. 

(2013) and (2016); it is defined as the conditional mean returns of the institution 𝑖 when the 

market, as a whole, is in distress. This situation can be written as follow: 

𝑀𝐸𝑆𝑖,𝑡 (𝛼 = 𝐸 (𝑟𝑖,𝑡|𝑟𝑚,𝑡 ≤ 𝑉𝑎𝑅𝑚,𝑡(𝛼))), (A6) 

with 𝑟𝑖,𝑡, 𝑟𝑚,𝑡are the returns of the institution 𝑖 and the returns of the market and 𝑉𝑎𝑅𝑚,𝑡(𝛼) is 

the 𝑉𝑎𝑅 of the market portfolio for a given risk level 𝛼, at time 𝑡. The 𝑀𝐸𝑆 is equal to the 

partial derivative of the Expected Shortfall (ES) of the market portfolio with respect to the 

weights of the institution 𝑖, and then measures its marginal systemic risk contribution. 

 

 Measure 9 (M9), Component Expected Shortfall (CES): is introduced by Banulescu 

and Dumitrescu (2015); it quantifies the contribution of an institution to the risk of the system 

by multiplying the 𝑀𝐸𝑆𝑖,𝑡 of this institution at time 𝑡 by its weight in the system such as: 

𝐶𝐸𝑆𝑖,𝑡(𝛼) = −𝑤𝑖,𝑡𝑀𝐸𝑆𝑖,𝑡 (𝛼 = 𝐸 (𝑟𝑖,𝑡|𝑟𝑚,𝑡 ≤ 𝑉𝑎𝑅𝑚,𝑡(𝛼))), (A7) 

where 𝑟𝑖,𝑡, 𝑟𝑚,𝑡 are the returns of the institution 𝑖 and the returns of the market and 𝑉𝑎𝑅𝑚,𝑡(𝛼) 
is the 𝑉𝑎𝑅 of the market portfolio for a given risk level 𝛼, at time 𝑡.The weight of the institution 

𝑖 denoted 𝑤𝑖,𝑡 is simply its market value divided by the total market value of the system. 

 

 Measure 10 (M10), Volatility (Vol): is the aggregated volatility of all the financial 

institutions in the system or simply the volatility of a market index. It is defined as the standard 

deviation of a one year period of opening days.  
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 Measure 11 (M11), Dynamic Causality Index (DCI): built by Billio et al. (2012); it 

measures the degree of interconnexion in the system as the number of significant Granger 

causalities dived by the total number of Granger causalities such as: 

𝐷𝐶𝐼𝑡 = (#𝐺𝐶𝑡
∗)/ (#𝐺𝐶𝑡) , (A8) 

with #𝐺𝐶𝑡
∗ the number of significant Granger causalities and #𝐺𝐶𝑡 the total number of Granger 

causalities at time 𝑡. 
 

 Measure 12 (M12), Systemic RISK (SRISK): proposed by Acharya et al. (2012) and 

Brownlees and Engle (2017); it corresponds to the amount of capital needed by a firm in distress 

when the market is also in distress and is defined as: 

𝑆𝑅𝐼𝑆𝐾𝑖,𝑡(1 − 𝛼) = max {0, 𝛾𝐷𝑖,𝑡 − (1 − 𝛾)𝑊𝑖,𝑡[1 − 𝐿𝑅𝑀𝐸𝑆𝑖,𝑡(1 − 𝛼)]}, (A9) 

with 𝛾 the prudential capital requirement required by the regulator, 𝐷𝑖,𝑡 the amount of debt and 

𝑊𝑖,𝑡 the amount of liabilities of the institution 𝑖 at time 𝑡. 𝐿𝑅𝑀𝐸𝑆𝑖,𝑡(1 − 𝛼) is the long run 

approximation (six months) of the 𝑀𝐸𝑆𝑖,𝑡(1 − 𝛼) of the institution 𝑖 at time 𝑡 and is defined 

such as: 

𝐿𝑅𝑀𝐸𝑆𝑖,𝑡(1 − 𝛼) ≈ 1 − 𝑒𝑥𝑝[18×𝑀𝐸𝑆𝑖,𝑡(1 − 𝛼)]. (A10) 

 

 Measure 13 (M13), Turbulence Index (TI): introduced by Kritzman and Li (2010), this 

index reflects the excess volatility and compares the squared realized returns to their historical 

volatility; it is written: 

𝑇𝐼𝑡 = (𝑟𝑡 − 𝜇)
′Σ−1(𝑟𝑡 − 𝜇), (A11) 

with 𝑟𝑡 the vector of the returns, 𝜇 the historical mean returns and Σ the variance covariance 

matrix of the returns.  

 

 Measure 14 (M14), Delta Conditional Value-at-Risk (ΔCoVaR): also proposed by 

Adrian and Brunnermeier (2016); it is the difference between the CoVaR of the institution 𝑖 at 

a given risk level 𝛼 = 5% and the CoVaR of the same institution but at 𝛼 =  50% (median 

state). 

∆𝐶𝑜𝑉𝑎𝑅𝑖,𝑡(𝛼) = 𝐶𝑜𝑉𝑎𝑅𝑖,𝑡(𝛼) − 𝐶𝑜𝑉𝑎𝑅𝑖,𝑡(0.5), (A12) 

where 𝐶𝑜𝑉𝑎𝑅𝑖,𝑡(𝛼) is the 𝑉𝑎𝑅 of the system for a given risk level 𝛼, conditional on institution 

𝑖 being under distress at time 𝑡. 
 

 Measure 16 (M16), Amihud Illiquidity Measure (AIM): built by Amihud (2002), this 

measure captures the illiquidity level of the trades on a given asset. The variable 
tiAIM ,
 is 

defined: 
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where |𝑟𝑖,𝜏| is the absolute return of the institution 𝑖 and 𝑇𝑂𝑖,𝜏 is the turnover of the same asset 

at time 𝜏, on a given period from 𝑡 − 𝐾 to 𝑡. 
 

Then, the three financial macro variables used generally as leading indicators of economic 

activity (see Estrella and Trubin, 2006; Chen et al., 2009) must be added to this list of measures: 

 Measure 7 (M7), Term Spread which measures the slope of the yield curve and which 

corresponds to the yield spread between 10-year and 3-month Treasury bills - this variable 

is a leading indicator of economic activity (Estrella and Trubin, 2006); 

 Measure 8 (M8), Credit Default Yield Spread which represents the difference between 

the yield of corporate bonds rated BAA and the ones rated AAA by Moody's; Chen et al. 

(2009) show that this variable is an aggregated measure of the robust credit risk to frictions 

(tax and liquidity) on the bond market; 

 Measure 15 (M15), TED Spread which represents the difference between the LIBOR 

three-month rate and sovereign interest rates to three months - an increase of this variable 

is the sign that lenders expect an increase in credit risk in the interbank lending market.
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Appendix B: The financial institutions 

 

Are presented below, the financial institutions that served to build the systemic risk measures 

(see Brownlees and Engle, 2017). These institutions fall into four financial industry group 

covering the depositories, the insurers, the broker-Dealers agencies. The last one group is 

dedicated to the “Others” financial institutions that are not in the other three groups. 

 

Table A1 

Tickers of Financial Institutions 

Banks   Insurances 

Code Institution   Code Institution 

BAC Bank of America   ABK Ambac Financial Group 

BK Bank of New York Mellon   AIG American International Group 

BBT BB&T   CB Chubb Corp. 

C Citigroup   CNA CNA Financial Corp. 

HBAN Huntington Bancshares   CVH Coventry Health Care 

JPM JP Morgan Chase   HUM Humana 

MTB M&T Bank Corp.   LNC Lincoln National 

MI Marshall & Ilsley   MMC Marsh & McLennan 

NTRS Northern Trust   MBI MBIA 

SOV Sovereign Bancorp   PGR Progressive 

STT State Street   TRV Travelers 

SNV Synovus Financial   UNH UnitedHealth Group 

Other financial institutions   Brokers 

Code Institution   Code Institution 

ACAS American Capital   ETFC E*Trade Financial 

AXP American Express   GS Goldman Sachs 

COF Capital One Financial   LEH Lehman Brothers 

EV Eaton Vance   MER Merill Lynch 

FITB Fifth Third Bancorp   MS Morgan Stanley 

BEN Franklin Resources   SCHW Schwab Charles 

LM Legg Mason   TROW T. Rowe Price 

SEIC SEI Investment Company     

SLM SLM Corp.     

AMTD TD Ameritrade       

Note: Bloomberg. Cylindrical sample of 60 American financial institutions (Cf. Brownlees and Engle, 2017).  

Note: This Table reports the tickers of the institutions. 
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Appendix C: Correlations among the systemic risk measures 

 

Table A2 

Pearson and Spearman correlations among the systemic risk measures 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 

M1 1,00 .43 .59 .84 .60 .57 .45 .61 .58 .61 -.23 .84 .23 .66 .26 .61 

M2 .40 1,00 .38 .41 .43 .35 .68 .39 .33 .51 .03 .47 -.11 .35 -.19 .60 

M3 .79 .36 1,00 .37 .94 .97 .31 .87 .97 .79 .11 .59 .52 .93 .67 .57 

M4 .72 .30 .48 1,00 .31 .36 .54 .34 .37 .37 -.24 .83 .09 .42 .06 .45 

M5 .67 .35 .77 .23 1,00 .92 .33 .89 .91 .82 .17 .50 .45 .94 .57 .62 

M6 .72 .26 .91 .49 .71 1,00 .24 .88 1,00 .72 .13 .60 .52 .94 .69 .49 

M7 .32 .63 .44 .33 .38 .26 1,00 .18 .24 .47 -.01 .44 -.09 .25 -.11 .54 

M8 .71 .29 .70 .32 .68 .66 .08 1,00 .87 .74 .09 .56 .40 .85 .55 .52 

M9 .73 .25 .89 .49 .71 .99 .25 .66 1,00 .70 .13 .61 .53 .94 .69 .48 

M10 .76 .47 .89 .48 .67 .74 .61 .65 .72 1,00 -.07 .53 .16 .64 .28 .93 

M11 -.21 .02 -.23 -.17 .01 -.13 -.05 -.21 -.11 -.32 1,00 -.31 .20 .14 .21 -.22 

M12 .75 .38 .76 .67 .40 .74 .28 .61 .74 .74 -.36 1,00 .15 .59 .16 .56 

M13 .14 -.24 .16 .05 .22 .23 -.28 .17 .22 -.05 .25 .02 1,00 .56 .65 -.05 

M14 .81 .33 .82 .55 .85 .81 .34 .67 .82 .67 -.02 .62 .27 1,00 .68 .43 

M15 .08 -.39 .15 -.19 .34 .26 -.49 .41 .26 -.03 .17 -.01 .48 .25 1,00 .00 

M16 .76 .64 .75 .64 .46 .61 .63 .54 .60 .88 -.39 .84 -.20 .54 -.29 1,00 

Note: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. M1 to M16 represent the 16 systemic 

risk measures and are in the following order: M1: Spillover Index, M2: Herfindahl-Hirschman Index, M3: VaR, M4: Absorption 

Ratio, M5: CoVaR, M6: MES, M7: Term Spread, M8: Default Yield Spread, M9: CES, M10: Volatility, M11: Dynamical Causality 

Index, M12: SRISK, M13: Turbulence Index, M14: CoVaR, M15: TED Spread and M16: Amihud Illiquidity Measure. The 

significant correlation at 5% level are in black, the non-significant correlations are in grey and the correlations above .80 are 

in bold. The out-of-diagonal elements (upper top-right) are the Pearson correlations, while the others out-of-diagonal elements 

(lower bottom-left) are the Spearman correlations. When computing the correlations for the conditional concordant extreme 

variations of measures above their respective 20th quantiles, they appear to be all equal to 1. 


