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Abstract 

Cyclones are relatively instantaneous shocks where arguably most of the important 

consequences take place in the first few weeks or months. In this paper we construct 

destruction proxies of wind exposure and storm surge damages and use satellite measures of 

nightlight intensity to investigate the short-term impact of tropical cyclones using the case 

study of Cyclone Pam, which struck the South Pacific Islands in March 2015. Using the 

unaffected islands as a control group our regression analysis reveals that initially the storm 

reduced economic activity in the affected islands by as much as 111%, but by the 7
th

 month 

there were positive boosts to nightlight intensity.  By the 9
th

 month this resulted in cumulative 

net increases in activities related to nighttime electricity usage. More generally, our results 

suggest that there is likely considerable temporal heterogeneity in the response of areas 

affected by tropical cyclones and demonstrates the potential of using nightlight imagery to 

assess the short-term economic impact of tropical storms, and possibly other extreme event 

phenomena, in a relatively timely manner.   
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1. Introduction 

Over the last few years there has been an increasing concern over the economic impact of 

tropical cyclones on countries, in part because of the possibility that the frequency or strength 

of storms may increase in certain regions due to climate change, see Walsh et al. (2015).  

Unsurprisingly there are now a number of papers that have investigated the macroeconomic 

consequences of these storms. While, the evidence thus far has been mixed, most published 

studies suggest, if anything, a small negative effect. For instance, Rasmussen (2004) in a 

study of tropical storms in the Caribbean for the period 1970-2002 found a negative effect of 

0.05% on GDP growth. Similarly, Strobl (2011) estimated a negative impact of 0.83% on 

United States county income growth rates. Importantly all of the existing studies have 

examined the impact of tropical storms at a relatively low temporal frequency, that is, 

annually or more long term. However, arguably, given that tropical storms are almost 

instantaneous shocks, much of the fundamental reaction to these storms occurs in the first 

few weeks or months. These short-term consequences are likely to be muddled in lower 

frequency data, particularly if they are heterogeneous over time. For example, while one 

might expect an immediate negative impact on economic activity due to the destruction and 

indirect losses caused by cyclones, as time goes by recovery through international aid, re-

construction, and investment may dominate any still existing negative effects and eventually 

boost economic activity (Horwich 2000).   

The main obstacle in trying to explore the short-term impact of cyclones has arguably been 

the lack of availability of appropriate temporally high frequency economic activity data. 

However, researchers have over the last few years increasingly resorted to nightlight intensity 

imagery to measure local economic activity on a consistent basis when data collected by 

statistical agencies has not been sufficient; see, for instance, Chen and Nordhaus (2011), 

Henderson et al. (2012), and Rybnikova and Portnov (2014). These earlier studies generally 



    2 
 

2 
 

used the Defense Meteorological Satellite Program (DMSP) images, which are publicly 

available annual composites of nightlight intensity at a local scale (30 arc-seconds) globally 

since 1992. However, more recently, the National Aeronautics and Space Administration 

(NASA) has also started providing satellite imagery data at higher frequency (monthly) and a 

higher resolution (15 arc-seconds). Specifically, a consistent series of monthly nightlight 

intensity images, known as the Visible Infrared Imaging Radiometer Suite (VIIRS) light data, 

that is available since January 2014 and updated with only a few months delay. Recent 

studies, such as Li et al. (2013), Ma et al. (2014), and Kyba et al. (2015), have confirmed 

their potential for measuring economic activity even at a very local scale.    

The objective of this paper is to investigate the impact of tropical cyclones measured by wind 

exposure and storm surge destruction indices on economic activity, proxied by VIIRS 

monthly nightlight data, using the case study of Cyclone Pam, which struck the South Pacific 

islands in May 2015. Cyclone Pam first formed in the Southern Pacific Basin in early March 

of 2015, but by 12 March mutated into the most powerful tropical cyclone recorded in the 

southern hemisphere in history, with estimated wind speeds of 250 km h
-1

 and wind gusts that 

peaked at around 320 km h
-1

 (Esler 2015 and OCHA 2015a). It wrecked havoc mainly in the 

islands of Vanuatu, and to a lesser degree Solomon Islands and Tuvalu. The case study here 

provides an example of how monthly nightlight data can reveal the extent to which economic 

activity can be affected in the very short-term by tropical cyclones.  

2. Data 

2.1. Study Region 

The country sample studied in this paper consists of the South Pacific islands, which include 

American Samoa, Cook Islands, Fiji, Federated States of Micronesia, Guam, Kiribati, 

Marshall Islands, Northern Mariana Islands, New Caledonia, Norfolk Island, Niue, Nauru, 
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Pitcairn, Palau, French Polynesia, Solomon Islands, Tokelau, Tonga, Tuvalu, Vanuatu, Wallis 

and Futuna and Samoa. These are all small developing countries in terms of land area, 

population density, and Gross Domestic Product (GDP), and rely mostly on tourism for 

income generation.     

2.2. VIIRS Nightlight Satellite Imagery and Economic Activity 

There have been a number of studies that have used nightlight imagery to examine the 

economic impact of tropical cyclones, such as Elliott et al. (2015) and Bertinelli and Strobl 

(2013). These papers have all resorted to measures of nighttime brightness generated from the 

DMSP satellites. However, these nightlight composites suffer from a number of 

disadvantages, including saturation at upper levels, and the inability to discriminate 

combustion sources from lights; see Elvidge et al. (2013). In contrast, the recently available 

VIIRS nightlight imagery collected and processed from the Suomi National Polar-Orbiting 

Partnership satellite, offers a number of improvements, with particular relevance to the 

current context. 

Firstly, the VIIRS publicly available product provides monthly nightlight intensity data, 

while the published DMSP data is available only on an annual basis. While the National 

Oceanic and Atmospheric Administration (NOAA) will sell monthly DMSP data available 

upon request, many observations are not usable due to the fact that the overpass of the source 

satellite is around 19h30 and thus when parts of the globe at certain times of the year are not 

dark yet. The VIIRS overpass, in contrast, is at 1h30 and hence captures nightlight all year 

round for most of the globe. Additionally, the VIIRS data does not have a saturation point, an 

aspect that can be important for urban cores. Moreover, VIIRS-DNB images have a relatively 

low light detection limit of near 2 × 10
–11

 W cm
−2

 sr
−1

, compared to the around 5 × 10
–10

 W 

cm
−2

 sr
−1

 light detection limit of the DMSP composites (Elvidge et al. 2013). Finally, the 
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VIIRS provides intensity measures at a higher resolution (15 arc-seconds, around 750 m at 

the equator) than the DMSP product (30 arc-seconds, around 1 km at the equator).   

To conduct our study we have accessed the monthly composites from January 2014 until 

April 2016, i.e., we have 27 months of data of which 13 are post Cyclone Pam. One should 

note that while, normally light intensity is measured in radiance units, in the calibration of the 

data from the VIIRS the effect of clear-sky is taken into account by subtracting estimates of 

this effect from the observed radiance values. Since this procedure does not take account of 

the contribution of airglow, the clear-sky offset tends to be too large. Thus near the noise 

floor of the data, in which values tend to be very small, there will be both small negative and 

positive values, resulting in what has been termed albedo radiance values; see Chen and 

Nordhaus (2015). One should note that the unit of the data as used throughout our analysis is 

in W cm
−2

 sr
−1

. We show in Figure 1, as an example of nightlight intensity at the island 

levels, the distribution for parts of the Vanuatu island group in March, 2014, where the level 

of lights ranges from low (yellow) to high (red). Figure 1 shows considerable differences 

across the islands as well as within islands, where the red areas correspond to the more 

populated areas, and hence economic activity, intense areas.    

Some discussion is warranted as to what extent nightlight images are capturing economic 

activity, or at least what sort of economic activity they are likely to capture. There is certainly 

growing evidence that, in the face of a lack of alternative proxies, nightlight can serve as a 

reasonable proxy of countries’ GDP; see, for instance, Chen and Nordhaus (2011) and 

Henderson et al. (2012). In terms of the VIIRS data Li et al. (2013) also show that the derived 

nightlight images are highly correlated with regional GDP, capturing nearly 90% of their 

variation. However, at the same time it is likely that brightness at night may not be a good 

proxy for some types of economic activities. For instance, it is unlikely to capture agricultural 

cropland production, although this may be less of an issue in our South Pacific island 
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example where the services sector, in particular tourism, rather than agricultural production is 

generally important in overall production. To further investigate this we plot the nightlight 

intensity as measured by VIIRS and GDP km
-2

 for the islands in our sample in Figure 2. The 

variables show a clear positive relationship, with a significant correlation coefficient of 0.97 

(p-value of 0.02).  

2.2. Typhoon Destruction Indices 

Destruction caused by tropical storms typically is due to damages due to strong winds, storm 

surge and heavy rainfall. To capture the potential destruction due to strong wind exposure we 

use an index in the spirit of Strobl (2012), which measures the wind speed experienced at a 

very localized level, taking account of the spatial heterogeneity of winds during a cyclone, 

and then use exposure weights to arrive at an island (group) specific proxy. More specifically, 

for a set of locations, i=1, …I, in our case the centroids of the nightlight cells, in island j we 

define the destruction as: 

 3max

,

1

, ij

I

i

jij WwD 


    W
max

 ≥ W*   (1) 

where D is the wind damage index, W
max

 is the maximum measured wind speed at point i 

during the storm, W* is a threshold above which wind is damaging, and w is exposure 

weights in the month prior to the cyclone of locations, i=1, …I, which aggregate to 1 at the 

island j level.  We set W* equal to 119 km h
-1

, which is the threshold which corresponds to 

Saffir-Simpson Scale Level 1, i.e., the lowest wind speed at which a tropical storm is 

considered the equivalent of a tropical cyclone in the North-Atlantic basin. One may want to 

note that we allow local destruction to vary with wind speed in a cubic manner, since, as 

noted by Emanuel (2011), kinetic energy from a storm dissipates roughly to the cubic power 

with respect to wind speed and this energy release scales with the pressure acting on a 



    6 
 

6 
 

structure; see Kantha (2008) and ASCE (2006). From (1), our index D requires local wind 

speed, W, and exposure weights, w, as inputs in order to be operational.  

In order to calculate the local wind speed we use Boose et al.’s (2004) version of the well-

known Holland (1980) wind field model. More specifically, the wind experienced due to the 

storm at any point P = i, i.e., Wi is given by: 
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(2) 

where M is the maximum sustained wind velocity anywhere in the storm, T is the clockwise 

angle between the forward path of the storm and a radial line from the storm center to the 

pixel of interest, P=i, H is the forward velocity of the hurricane, X is the radius of maximum 

winds, and R is the radial distance from the center of the storm to point P=i. The remaining 

variables in (2) consist of the gust factor G and the scaling parameters F, S, and B, for surface 

friction, asymmetry due to the forward motion of the cyclone, and the shape of the wind 

profile curve, respectively. 

In terms of implementing (2) one should note that M can be obtained from storm track data, 

H can be directly calculated by following the storm’s movements between locations along its 

track, and R and T are calculated relative to the point of interest P=i. All other parameters 

have to be estimated or assumed. We have no information on the gust wind factor G, but a 

number of studies, for instance Paulsen and Schroeder (2005) have measured G to be around 

1.5, and we also use this value. For S we follow Boose et al. (2004) and assume it to be 1. 

While we also do not know the surface friction to directly determine F, Vickery et al. (2009) 

note that in open water the reduction factor is about 0.7 and reduces by 14% on the coast and 

28% further 50 km inland. We thus adopt a reduction factor that linearly decreases within this 
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range as we consider points i further inland from the coast. Finally, to determine B we 

employ Holland’s (2008) approximation method, and we use the parametric model estimated 

by Xiao et al. (2009) to estimate X. In terms of the implementation of (2) we use the best 

track data for Cyclone Pam as taken from the Joint Typhoon Warning Center, which provides 

information, amongst other things, on the maximum wind speed and the location of the storm 

eye at 6 hourly intervals. We interpolate these data to obtain hourly observations. For each 

hourly observation of the storm we can then calculate the W for each nightlight cell centroid 

contained within our South Pacific islands and retain this value of at least 119 km h
-1

.  

In order to derive island specific aggregate time varying measures of destruction we also 

want to take exposure into account using w. Ideally we would like to have time varying 

information on the degree of dispersion of economic activity within islands at the most 

spatially disaggregated level as possible, given that wind speeds due to tropical storms can 

differ substantially across space. Since this is not available we instead use the above 

described nightlight imagery values at the cell level in the month (February 2015) before 

Cyclone Pam struck. As the calibration of the nightlight imagery induced negative values for 

some cells, we add a constant to all values equal to the absolute value of the largest negative 

value plus a small positive constant (0.00001). This enabled us to have positive weights for 

all nightlight cells and ensured that any weight, calculated as a percentage of an island’s total, 

varied between 0 and 1.       

While the extent of wind damage due to cyclones is certainly correlated with the amount of 

storm surge, this is probably only very imperfectly so; see, for instance, Needham and Keim 

(2014). Storm surge should therefore ideally be modeled independently. Unfortunately, storm 

surge modeling requires detailed local data, such as bathymetry and surface roughness that is 

unavailable for the South Pacific. We thus construct a rather crude index of storm surge prone 

areas as the weighted share of the area of low elevation coastal zone (L), in a similar spirit to 
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Elliott et al. (2015). More specifically, in order to identify L in the affected islands we follow 

McGranahan et al. (2007) and Brecht et al. (2012) and define land areas contiguous with the 

coastline up to a 10 m rise elevation using the Shuttle Radar Topography Mission (SRTM) 30 

m elevation data set. We then isolate the share of nightlight in these areas to arrive at an 

island share of nightlight intensity in storm surge prone areas. As before we add a constant to 

all values equal to the absolute value of the largest negative value plus a small positive 

constant (0.00001) to obtain positive weights. More precisely, we construct a measure of 

storm surge damages, S as:  





I

i j

ji

jij
A

L
wS

1

,

,   Li=1,0     (3) 

where L is an indicator of whether cell i lies within an low elevation coastal zone (=1) or not 

(=0) and A is the area of island j. The estimated values of S of the three affected islands are 

shown in the last column of Table 1. Accordingly, the largest storm surge potential damages 

are in Tuvalu, followed by the Solomon Islands and then Vanuatu.   

The final destructive aspect of tropical cyclones is that due to heavy rainfall. Unfortunately, 

we know of no data set that would give us a local enough measure of rainfall on a monthly 

basis since 2014, covering all islands within our sample. We hence must rely on the 

somewhat scarce evidence that suggests that local rainfall during a tropical storm is 

considerably correlated with local wind exposure. For instance, it has been found that both 

winds and precipitation are highest nearer to the eye of the storm (Riehl 1954). It must 

nevertheless be kept in mind that at best our wind damage proxy is capturing both damages 

due to wind exposure and rainfall, and at worst that our analysis can only be interpreted in 

terms of capturing damages due to wind exposure and, to a limited extent, storm surge.   
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3. Methodology 

3.1. Graphical Analysis 

We undertake two forms of graphical analysis. Firstly we take the island of Vanuatu as an 

example to show how pixel level nighttime intensity may have changed after the typhoon.  To 

this end we extract all pixels within the islands’ land surfaces for the composites March 2014, 

March 2015, and March 2015. We then subtracted the radiance values of March 2014 from 

March 2015 and the values of March 2015 from March 2016, in order to show possible 

changes in nighttime intensity values that may have coincided with the storm. Secondly, we 

calculate the average of pixel values for each set of islands affected by the typhoon according 

to our damage indices D and S outlined above for each month of the composites. For those 

unaffected we calculate out the average across all islands. The monthly series of the three 

affected islands are then compared to the unaffected group.     

3.2. Regression Analysis 

In order to statistically disentangle the effect of wind and storm surge destruction of Cyclone 

Pam on the South Pacific islands we estimate the following: 

 







 
12

0

,

12

0 k

tjjtjkt

k

jktjt DSN 
   (4) 

where N is the average nightlight intensity in island j at time t and D and S are our wind and 

storm surge destruction proxies described above, with contemporaneous (k=0) and lagged 

(k>0) effects.  One should note that prior to March 2015, i.e., prior to Typhoon Pam, D and S 

are zero.  λ is a vector of time specific indicator variables and is included in order to control 

for time specific shocks common to all South Pacific islands. µ is a vector of island specific 

time invariant indicator variables. In order to account for these we employ a panel fixed 
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effects estimator, which essentially transforms the variables into deviations from their means, 

and thus purges µ (as well as α) from (4). ε is an i.i.d. error term, while α is a standard 

intercept term. In order to allow for spatial- and autocorrelation we calculate Driscoll and 

Kraay (1998) standard errors. One may also want to note that after we control for island 

specific time invariant unobservables, µ, arguably D and S are exogenous since they can be 

viewed as random realisations of storm occurrence. Thus one can with reasonable confidence 

interpret the coefficients of interest to be estimated, i.e., the ϕ’s and β’s, as capturing the 

causal effect of wind and storm surge destruction on average nightlight intensity.   

3.3. Quantitative Implications 

One can use the estimated coefficients from (4) in order to gain insight into the quantitative 

significance of Cyclone Pam. More specifically, we can construct the following measure of 

cumulative impact, C, for each of our 12 months after the cyclone: 


 
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 
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0 1,
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jkt
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jkt

sj
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D

N

S
C




  s=1,…, 12     (5) 

where Nj,t=-1 is the average nightlight intensity in island j in the month (February 2015) before 

Cyclone Pam. Importantly, one should note that as we calculate C for each period after the 

cyclone we set βt-s and ϕ equal to 0 when they are not significant. Moreover, for any k we set 

the additional C itself to 0 if an F-test of the coefficients, excluding the ones that are not 

significant, indicated that the null hypothesis that they are jointly equal to zero cannot be 

rejected at the 5% significance level. We are thus considering cumulative impacts as those 

where both the marginal and total cumulative impacts were significant.   
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4. Results 

Calculation of D and S from equations (1) through (3) reveals that the Solomon Islands and 

Vanuatu were potentially affected by typhoon winds, with values of 0.00340 and 1.2389, 

respectively, while the Solomon Islands, Tuvalu, and Vanuatu were potentially affected by 

storm surge damage, with values of 1.309 x 10
-6

, 0.0005, and 5.739 x 10
-7

, respectively.   

Our graphical pixel level analysis in Figures 3 and 4, using Vanuatu as an example, shows 

that in Vanuatu compared to one year prior to the typhoon there were some visual decreases 

in nighttime intensity, particularly where much of the intensity is concentrated, as suggested 

by Figure 1, whereas one year after storm intensity increased in this area again.   

Figure 5 depicts the trends in average nightlight intensity for the three affected countries, i.e., 

parts (b), (c), and (d), as well as the average of all unaffected countries in part (a). For the 

three affected islands there is a drop in intensity just after the storm. However, this fall in 

intensity seems to also have occurred on average for unaffected groups. Moreover, it seems to 

coincide with the general seasonal patterns during this period of the year. This underlines the 

importance of trying to disentangle the potential effect of Typhoon Pam with regression 

analysis. 

We estimate the regression equation in (4) using all islands, affected and unaffected, the 

results of which are given as Model 1 in Table 1. As can be seen, after purging island specific 

effects, µ, from (4) using a fixed effects estimator, the control variables manage to explain 14 

per cent of the variation in nightlights. Looking at the individual coefficients, one can see that 

wind exposure has a negative and significant impact in the month of the strike and the 5 

months thereafter, except for the 3
rd

 month.  From the 7
th

 month onward the trend is reversed 

when a positive significant impact sets in which continues until the end of our sample period, 

i.e., 12 months after Typhoon Pam first produced damage.   
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In contrast to wind exposure, the effect of storm surge is shown to be insignificant at the time 

of the cyclone strike as well as in the months thereafter. This may be because storm surge 

does not have a significant enough- or long enough, if the impact lasts less than a month, 

effect to show up in our nightlight measure of local economic activity. Alternatively, our 

‘modeling’ of storm surge may be too simplistic to accurately capture its nature, hence 

inducing attenuation bias. Since the latter reason is likely to play at least some role, one must 

view our finding with regard to storm surge with at least some caution. Another reason may 

be that the wind destruction proxy is already capturing storm surge and hence there is a 

problem of multi-collinearity. We thus in Model 2 in Table 1 excluded D and its lags from 

(4), but, as can be seen, this similarly produced insignificant coefficients on S and its lags and 

reduced the explanatory power of the model to an R
2
 of 0.08.  

Damage assessment reports suggest that Tuvalu experienced the most severe destruction from 

storm surge compared to Vanuatu and Solomon Islands in that there was inundation from 

storm surge and sea swells of 3-5 m in 7 of its 9 islands and the government had to declare a 

state of emergency (OCHA 2015c). We thus experimented with setting S equal to zero for 

Vanuatu and the Solomon Islands but kept the value for Tuvalu unchanged. As depicted in 

Model 3 in Table 1, this did not produce any significant effect of S on island average 

nightlight intensity.  

We next calculate the implied cumulative impact in (5) over time for wind exposure using the 

significant β’s for the Solomon Islands and Vanuatu, but setting the ϕ’s,  in accordance with 

our regression results, to zero. The resultant values are shown in Figures 6 and 7, 

respectively. As can be seen, given that we are using the same β for both islands, the pattern 

of the cumulative impact is identical. In this regard, one finds that the cumulative negative 

effect of Cyclone Pam increases slowly until the 5
th

 month after the event, until it begins to 

fall as the marginal impact turns positive. By the 8
th

 month the overall cumulative impact is 
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0. Thereafter, as the positive effects in response to the storm accumulate, there is a starkly 

rising beneficial impact of the storm on nightlight intensity. While the pattern of the impact is 

by construction the same across the two islands, the quantitative nature of this effect differs 

substantially. For the Solomon Islands the total negative impact is never greater than two 

percentage points of the pre-storm level of intensity, while one year after the event the net 

cumulative positive effect has risen to a little over 5 percentage points. Hence one can 

conclude that the overall net impact of Pam was relatively small for the Solomon Islands, at 

least measured in terms of nightlight intensity.  

Reports that assessed damage following Typhoon Pam similarly found that destruction was 

relatively lower for Solomon Islands. In Solomon Islands the islands affected by strong winds 

and rainfall were among the least populated territories thereby minimizing any negative 

impact. For instance, in Malaita and Temotu Province, just 30,000 people (5% of the total 

population) were affected by flooding caused by heavy rains (OCHA 2015c), while the 

islands of Anuta and Temotu were most affected by strong winds and rainfall and are among 

the least populated territories (OCHA 2015d). The Solomon Islands also received some 

international support for relief and reconstruction immediately following the cyclone, perhaps 

accounting for the subsequent positive impact after the cyclone struck.  

In contrast to the Solomon Islands, both within the first few months when effects were 

negative, as well as after 9 months when the cumulative effect turned positive, the impact in 

Vanuatu was fairly large. More precisely, our results suggest that the total net negative 

impact on local economic activity reached a loss of as much as 111% by the 5
th

 month. 

Damage reports also found losses to be high and were estimated to be approximately US$ 

449.4 million (64.1% of GDP), which is most likely an underestimation because the figure 

was based on the best available information at the time (Esler 2015). The vast destruction is 

likely because Typhoon Pam directly struck Vanuatu at category 5 strength and all 6 
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provinces were affected with the larger and more populated islands being more negatively 

affected (OCHA 2015b). Moreover, the center of the storm passed east of the main island 

Efate, where the capital Port Vila was directly struck. The cyclone damaged or completely 

destroyed 17,000 buildings, including houses, schools, hospitals and clinics (Esler 2015). 

However, our results show that once the storm started enhancing economic activity there was 

a large positive effect. As a matter of fact, as of the final month of available data our 

regressions results suggest that local nighttime brightness has increased by over 300% 

relative to prior to the storm.  

Our finding of an initial large negative impact within the first 5 months after Cyclone Pam 

struck followed by a large positive impact is supported by damage assessment reports. Esler 

(2015) stated that while Typhoon Pam was expected to reduce Vanuatu’s GDP growth by 5.5 

percentage points relative to the 2015 pre-cyclone forecast, the large scale of recovery and 

reconstruction activities along with international aid and funding received which started to 

take place almost immediately following the storm would allow for a large positive GDP 

growth of 1.4% in 2015, with further increases in 2016 and 2017. Furthermore, although 

tourism was one of the most negatively affected sectors, earnings in the industry were only 

negatively affected for 3-6 months while hotels remained closed for clean up and re-

construction (Esler 2015). Additionally, government spending in quick response for recovery 

and reconstruction and international funds received, along with policies to increase tax 

exemptions and commercial bank lending, may have significantly increased economic 

activity within months after Typhoon Pam struck (Elser 2015).  

Just days after Typhoon Pam struck the government of Vanuatu led response efforts with 

support from the Pacific Humanitarian Team and the Vanuatu Humanitarian Team and 

worked with various development partners for recovery and re-construction activities. The 

government spent US$ 2.21 million from its Emergency Relief Fund to support immediate 
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humanitarian response and redeployed additional funds from their 2015 fiscal budgets (Esler 

2015). Further, US$ 3.28 million was received from the European Union (EU), a US$ 1.84 

million insurance payout was received from the World Bank for the 2015 recurrent fiscal 

budget to finance recovery-related expenditures, and grant funding of US$ 6.09 million was 

received from donors for recovery operations (Esler 2015). As of 26 March, just about 12 

days after Thypoon Pam struck US$ 18 million was already received (OCHA 2015e). 

Overall, recovery and reconstruction were estimated at US$ 316 million, of which US$ 95 

million was for short-term needs (Esler 2015).  

5. Discussion  

We investigate the short-term economic impact of Cyclone Pam using monthly composites of 

nightlight intensity and tropical cyclone destruction indices. Our regression analysis reveals 

that initially the storm reduced economic activity in the affected islands. However, by the 7
th

 

month, positive boosts to nightlight intensity, possibly due to re-construction activities and 

government programs, began to counteract any negative effects and by the 9
th

 month resulted 

in cumulative net increases in activities related to nighttime electricity usage. More generally, 

our results suggest that there is likely considerable temporal heterogeneity in the response of 

areas affected by tropical cyclones. Moreover, the analysis demonstrates the potential of 

using nightlight imagery to assess the short-term economic impact of tropical storms, and 

possibly other extreme event phenomena, in a relatively timely manner.   

There are of course a number of shortcomings of our study that future research could address. 

Most obviously, waiting for the availability of more monthly images would allow one to 

explore what the impact of tropical cyclones are beyond one year from their occurrence. 

From a methodological point of view, clearly a better storm surge destruction proxy, as well 

as one capturing the damages due to heavy rainfall destruction, would provide a more 
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accurate picture of the economic consequences of these storms. Also, while very convenient 

in terms of spatial and temporal resolution, further investigation into what sort of economic 

activity nightlight images are capturing would be beneficial. Finally, since we find different 

patterns of impact as time passes since the event, a further understanding of what is driving 

these patterns would be insightful and aid policy makers in post event management strategies.   
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