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Integrated Micro-Macro Structural Econometric Framework for Assessing Climate-

Change Impacts on Agricultural Production and Food Markets 

 

Abstract 

We develop a structural econometric micro-level farmland supply model that is linked to a 

market-level equilibrium model. The estimation accounts for corner solutions associated with 

disaggregated land-use data, whose usage enables treating prices as exogenous. The explicit 

formulation of production and output prices enables the micro-macro linkage, as well as the 

exploitation of macro-level information so as to assign production interpretation to the 

estimated coefficients of the micro-level model. We employ the model for assessing climate-

change impacts in Israel, in which agriculture is protected by import tariffs. We find climate-

change beneficial to growers, particularly due to the positive impact of the forecasted large 

temperature rise on field-crops production. Fruit outputs decline, and reduce consumer 

surpluses, but to a less extent than the increase in total farming profits. Nearly 20% of the 

profit rise is attributed to farmers’ adaptation response through land reallocation. Adaptation 

to the projected reduction in precipitation by increasing irrigation is found warranted from 

farmers’ perspective; however, not to consumers. Abolishing import tariffs effectively 

transfers surpluses from producers to consumers, but the overall welfare effect of the policy 

varies across climate scenarios.  
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Integrated Micro-Macro Structural Econometric Framework for Assessing Climate-

Change Impacts on Agricultural Production and Food Markets 

Introduction 

Owing to their ability to capture economic interactions among quantities and prices of 

multiple products and regions, general and partial equilibrium models are powerful tools for 

assessing climate-change effects on agriculture. Such macro-level models are frequently 

linked with micro-level agricultural production models to represent farmers' optimal responses 

to changes in exogenous variables, including climate, prices and policy instruments. The 

micro-level models are often developed based on the mathematical programming approach, in 

which agricultural production is represented explicitly, and thereby enables integration with 

the macro-level equilibrium models to reflect price feedback effects on supply changes (e.g., 

Howitt et al., 2003; Arndt et al., 2011; Arndt et al., 2012; Palatnik et al., 2011; Parry et al., 

2004; Nelson et al., 2010; Robinson et al., 2012; Shrestha et al., 2013). The agricultural 

production functions in such micro-level models are usually calibrated, or derived from 

estimates external to the model (Michetti, 2012). That is, there is no direct linkage between 

the macro-level equilibrium model and the dataset used to derive the agricultural production 

functions in the micro-level model. Consequently, the analysis does not capture the sample 

heterogeneity present in the data with regard to farmers’ productivity and production 

decisions. This paper develops a structural econometric framework for estimating a micro-

level supply model which is consistently linkable to a macro-level market-equilibrium model. 

Two types of econometric-based models are widely used in economic analyses of climate 

change, both are based on the notion that observed farm-management practices and profits 

reflect farmers’ optimal responses to external factors, including climate. The first are land-use 

models, which utilize spatial variability in climate conditions to explore climate-change 

adaptation measures (e.g., Mendelsohn and Dinar, 2003; Kurukulasuriya and Mendelsohn, 
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2008; Seo and Mendelsohn, 2008; Fleischer et al., 2011). The second type of econometric 

models employs the Ricardian or Hedonic approach (Mendelsohn et al., 1994; Schlenker et 

al., 2005; Deschênes and Greenstone, 2007), in which spatial variation in farm profits or land 

values are explained by economic and environmental variables. However, both types of 

models are based on a reduced-form approach; that is, they do not explicitly estimate 

production functions, and therefore can be linked to macro-level models only implicitly (e.g., 

Mendelsohn and Nordhaus, 1996).  

The structural model developed in this paper builds on the approach used by Kaminski et 

al. (2013). The approach relies on a recursive decision-making process: farmers allocate land 

across crop bundles (e.g., fruits, vegetables, field crops) at the beginning of the growing 

season based on their anticipated end-of-season per-hectare profits, which are themselves 

based on farmers’ long-term experience with respect to weather during the growing season; 

that is, based on climate. Hence, spatial variation in climate conditions is reflected by spatial 

variation in the anticipated relative profitability of bundles, which in turn dictates the 

observed spatial variation in land allocation across crop bundles. The structure of the profit 

function enables the use of disaggregated crop-acreage data and macro-level production value 

information for estimating per-hectare production and cost functions, as well as testing 

whether the estimated profit functions comply with economic theory. The use of land-use data 

rather than land values avoids the need to rely on the presence of perfect markets for inputs 

and lands, as assumed by the Ricardian/Hedonic approach. More important for the purpose of 

this study, agricultural production and output prices are expressed explicitly in the estimated 

model; this key property is exploited to consistently link this structural econometric micro-

level supply model with a macro-level demand model. The consistent linkage is obtained by 

constraining the estimation of the micro-level model such that the ratios of the sample’s 

production values of the various crops equal the ratios of production values observed at the 
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macro level. Then, in simulation of exogenous changes, the two models feed into one another 

to determine the equilibrium quantities and prices of agricultural products, while capturing the 

heterogeneous supply responses in the entire sample used for estimating the micro-level 

model. 

Our analysis has two major differences compared to the modeling strategy used by 

Kaminski et al. (2013). First, by using regional land-allocation data, Kaminski et al. (2013) 

avoided the need to deal with corner solutions (land shares of 0 or 1). However, this is not 

appropriate for our purpose, because at the regional level prices may be endogenous. Our 

analysis uses disaggregated data at the community level, where prices can be more safely 

considered as exogenous. This, however, requires us to use an estimation strategy that 

controls for the presence of non-negligible number of observations with corner solutions. 

Second, Kaminski et al. (2013) simulated the impact of climate change while ignoring the 

responses of output prices to supply changes. We account for these price feedback effects by 

linking the micro-level supply model to a macro-level demand model, and simulate partial 

equilibrium. Thus, prices are exogenous in the estimation of micro-level production decisions, 

but become endogenous in the simulations under partial-equilibrium conditions. 

The suggested methodology can be applied to various levels of spatial scales, employing 

partial- or general-equilibrium frameworks, wherein the prices of different crop bundles can 

be considered either exogenous or endogenous in the simulations. This enables using the 

model for analyzing the impacts of agricultural support policies, particularly those affecting 

international trade, that are a subject for continuous debate (see Matthews, 2014): in countries 

employing trade barriers such as import tariffs, the price of some crop bundles may be 

determined by equilibrium conditions in the local market, whereas in open economies prices 

are set in the global markets. 
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We illustrate our approach using Israeli data, assessing the impact of protective tariffs on 

the Israeli vegetative agriculture markets under climate change. Israel is particularly suitable 

for studying the impact of climate change on agriculture, because of its diversified climate 

conditions, from subtropical in the north to arid in the south, within a relatively small 

distance. In addition, Israeli agriculture is technologically advanced, and has enjoyed decades 

of experience of adaptation to unfavorable climate conditions. Not surprisingly, previous 

studies of the impact of climate change on Israeli agriculture cover the entire range of 

methodologies described above. Specifically, Kan et al. (2007) applied the mathematical 

programming technique to regional data from Israel, while Fleischer et al. (2008) applied the 

Ricardian approach to micro-level data. The impact of climate change on agricultural 

decisions in Israel was analyzed further by Fleischer et al. (2011), who used a discrete choice 

model in which farmers choose among a set of crop-technology bundles, and by Kaminski et 

al. (2013) based on their aforementioned structural model. In all of these studies, output prices 

were assumed constant and exogenous in the simulations of climate change. This assumption 

is particularly problematic in the case of Israel, and might lead to considerable bias even if 

global food prices are stable; this is because the Israeli government limits imports of many 

agricultural products through import tariffs, quantity limitations, and other institutional means 

(OECD, 2010); hence, many crop prices are determined internally. Therefore, a partial 

equilibrium model, in which prices are determined endogenously, is more suitable for 

assessing the ramifications of climate-change effects in the case of Israel. Furthermore, this 

also opens up a public economic perspective of the distribution of climate-change effects 

between producers and consumers (since the latter are affected by climate-driven price 

changes) with both efficiency and equity concerns as to which public policies could better 

mitigate potentially-harmful climate-related impacts onto economic activities. 
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We use changes in precipitation and temperature as projected under the various climate-

change scenarios adopted by the IPCC (IPCC 2014) in order to simulate changes in farmland 

allocations, agricultural production, output prices and producer and consumer surpluses. Our 

results point at positive impacts of the projected climate changes on the Israeli farming sector. 

These benefits are attributed to increased production of vegetables and field crops. On the 

other hand, fruit production is expected to shrink, entailing price increase up to the level 

where protection by import tariffs becomes ineffective. Consequently, local consumers of 

agricultural products face surplus reduction. However, the overall benefits to farmers exceed 

the losses to consumers, implying social welfare gains. We find the forecasted sharp 

temperature rise driving these results, with moderate counterbalance by the projected slight 

precipitation decline. 

We compare the above results to the case where import tariffs are abolished. This policy 

transfers surpluses from producers to consumers, where the social welfare increases only 

under large enough climate changes. We further show how the model can incorporate 

farmers’ adaptation through input-application changes, as well as to account for changes in 

prices and availability of inputs. Specifically, we find that offsetting the effect of precipitation 

reduction by increasing irrigation is an optimal strategy from farmers’ perspective, but not 

from the point of view of the society as a whole. 

In the next two sections we describe the micro-level supply model and the link to the 

macro-level model. We then present the data sources and the empirical results, including the 

estimation of the land-use supply model and the simulations of climate-change impacts on 

profits and consumer surplus. The final section discuses policy implications and potential 

extensions. 

Supply Model 
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We model a vegetative agricultural sector that operates in a small economy where all goods 

are freely traded, except for a subgroup of agricultural products that are subject to import 

tariffs. Consider a sample of I farms where each farm i, 1,...,i I=  can grow J potential 

bundles of crops (i.e., groups of field crops, vegetables, etc.). Let ji
s  be the land share of crop 

bundle j, 1,...,j J= , in farm i. The objective of some farmer i is to choose the vector of land 

shares s
i
, ( )1 , ...,s i i Jis s= , so as to solve the problem: 

 ( ) ( )
1

max =
s

s
i

J

i ji j ji ji i

j

s y c cρ
=

Π − −∑  (1)

 

s.t. 
1

= 1 
J

ji

j

s
=

∑  and 0 1, ...,   
ji

s j J≥ ∀ =  

where 
i

Π  is farm-i's economic profit (normalized to per-one-hectare profit), j
ρ  is the 

bundle's expected output price, ji
y  is the farm-specific expected end-of-season per-hectare 

yield of bundle j, ji
c  stands for the expected end-of-season bundle-specific per-hectare 

economic costs, and ( )sic  is the implicit production and management-cost function, 

representing costs that are neither bundle-specific, nor independent across bundles; for 

example, ( )sic  incorporates risks, the costs associated with unfeasible production of certain 

crop bundles in rotating systems and the allocation of quasi-fixed inputs such as labor and 

machinery across crop bundles with different patterns and cultivation timing. The function 

( )sic  captures the constraints on farmers' acreage decisions as motives for bundle 

diversification and represents the non-linear effects of the allocative land-use variables s on 

farm profits – a pivotal feature in positive mathematical programming (Howitt, 1995). 

We further specify the per-hectare output of each bundle j by the linear function 

b xji j iy = , where b j  is a vector of coefficients, and xi  is a set of farm-specific yield-related 

exogenous variables, including climate variables and farm characteristics.1 The bundle-
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specific economic costs are specified by γ wji j ic = , where w
i
 is a vector of cost-attributable 

exogenous variables and γ j  is the corresponding vector of coefficients. Thus, the expected 

per-hectare economic profit of bundle j is: 

 b x γ w v zji j ji j i j j i j jiy cρ ρ− = − ≡  (2)

 

where ( ),v b γj j j= −  and ( ),z x wji i j iρ= . Noteworthy, since γ wj i  incorporates the 

shadow values of constrained factors, it expresses the per-hectare economic costs rather than 

the explicit costs reported in bookkeeping records; hence, v zj ji  represents the per-hectare 

economic profit rather than the accounting profit. Also note that the vector of exogenous 

variables z ji
 being bundle-specific due to the multiplication of the variables in xi  by the 

respective output price jρ  is crucial for the identification of the production-function 

coefficients, which in turn allows the link between the micro- and macro-level models. 

The function ( )sic  plays a key role in the econometric analysis, as its functional 

specification determines the attributes of the structural equations to be estimated, and 

therefore the required estimation procedure. Carpentier and Letort (2013) and Kaminski et al. 

(2013) assumed the opposite-entropy function: 

 ( ) ( )
1

1
lns

J

i ji ji

j

c s s
a =

= ∑  (3)

 

where the a parameter, measured in land-per-money units (and therefore assumed positive) 

reflects the “weight” of the implicit costs in the economic-profit function. This is a negative, 

non-monotonic convex function with respect to jis . The non-monotonicity implies that, 

ceteris paribus, the implicit costs decline with jis  for ( )exp 1 0jis− ≥ ≥ , and increase with 

jis  when ( )1 exp 1jis≥ > − . Since land shares are negatively correlated among them through 

the land constraint, ( )sic  has a minimum at 1jis J=  for all 1,...,j J= .  
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The opposite-entropy specification leads to the multinomial logit functional form for the 

optimal land shares (see Appendix A): 

 ( )
( )

( )
*

1

exp

exp

v z
z

v z

j ji

j i J

j ji

j

a
s

a
=

=

∑
 (4)

 

where ( )* zj is  is the profit-maximizing land share of bundle j, and ( )1 ,...,z z zi i Ji≡ . 

The land constraint implies that the parameters of only 1J −  bundles can be identified; we 

specify bundle J as the reference bundle. As will be shown later, in order to simulate partial 

equilibrium one should identify the parameters of the linear yield function b j  for all the J 

bundles. We take advantage of the fact that farmers typically devote non-cultivated 

agricultural land to roads, storage lots and other uses that support the production in the 

cultivated areas, and treat these supportive lands as the reference bundle. As in crop cost-and-

return studies (e.g., see studies by UC Davis), the revenue contribution of the supportive lands 

is reflected only through the cultivated areas; that is, 0b J = . We divide and multiply *

jis  in 

Eq. (4) by ( )exp vJ Jia z  to obtain 

 ( ) ( ) ( )
1

*

1

exp expz V z V z
J

ji i j ji j ji

j

s

−

=

 
=  

 
∑  (5)

 

where ( )( ) ( ), ,V b γ γ B G
j j j J j j

a a= − − ≡ ; this implies that we cannot identify a  and v j , 

but only the coefficients Bj  and G j  in Vj . 

One could use Eq. (5) to obtain a system of 1J −  linear land-share regression equations.2 

Indeed, being conveniently estimable due to linearity, flexible, and ensuring that for each 

observation the predicted land shares are between 0 and 1, and add up to 1, the multinomial 

logit functional form was favored over alternative specifications in land-use analyses (e.g., 

Wu and Segerson, 1995; Hardie and Parks, 1997; Miller and Plantinga, 1999). However, the 
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set of linear regression equations derived by the multinomial logit specification cannot treat 

corner solutions (i.e., when ( )* 0z
ji i

s = , see comment 3). This limitation may not emerge 

when estimation is based on regionally aggregated data, where zero land share observations 

are seldom; but at the regional level prices may be endogenous.3 Our disaggregated land-use 

dataset discards the endogeneity of prices, but on the other hand may involve a non-negligible 

number of observations with corner solutions. Hence, we estimate Eq. (5) by employing the 

quasi maximum-likelihood approach to the fractional multinomial logit likelihood function 

(Papke and Wooldridge, 1996; Buis, 2010): 

 ( ) ( )( )*

1 1

ln ln z
I J

ji ji i

i j

L s s
= =

= ∑∑  (6)

 

where jis  is the observed land share, and ( )* zji is  is as specified in Eq. (5). 

The so-far-developed land-use model can be transformed into a supply model using the 

per-hectare yield function b xji j iy = , such that the predicted total production of bundle j by 

farm i is ( )* z b xi ji i j il s , where il  is the total land area of farm i. Two obstacles emerge: first, 

output data are frequently available only at the macro level (e.g., for the entire country); 

second, the coefficients b j  cannot be separated from the a parameter.4 We handle these 

limitations by referring to production outputs in relative terms and by utilizing macro-level 

information as a constraint in the estimation of the land-use model. Let the sample’s total 

production value of bundle j be 

 ( ) ( )*

1

=z z b x
I

j j i j i j i

i

A a l sρ
=
∑  (7) 

where ( )1,...,z z z I≡ . Let bundle 1 be the reference, and denote by jr  the known macro-level 

ratio of the total production value of bundle j relative to that of bundle 1. We estimate Eq. (6) 

subject to the set of constraints 
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( )
( )1

= 2,..., 1
z

  
z

j

j

A
r j J

A
∀ = −  (8) 

By this mean we overcome the limitation associated with the parameter a being unidentifiable 

(in view of Eq. (7), a is canceled out in Eq. (8)) and make use of the macro-level information 

embedded in the ratios jr , 2,..., 1j J= − , to assign meaningful production interpretation to 

the coefficients b j . 

Linking Micro- and Macro-Level Models 

The sample’s total production value of bundle j, ( )zjA , also serves as the link between the 

micro-level supply model and the macro-level demand model. Let 1

p

jt jt jφ ρ ρ=  denote the 

simulated output-price index of crop bundle j at some year t relative to year 1 (the base year, 

representing the sample period), so that 1

p

jφ  is normalized to 1. We define a vector of price 

indices ( )1 1,..., 

p p p

t t J tφ φ −=φφφφ , and the corresponding set of explanatory variables 

( )1 ,z x wp

ijt jt j it itφ ρ=  for every farm 1,...,i I= , bundle 1,..., 1j J= − , and year t, where xit  and 

w
it  incorporate farm-i’s predicted variables at year t. Accordingly, ( )*ˆ zj its  is the predicted 

land share calculated by Eq. (5) given the year-t’s set of variables ( )1,...,z z zit ijt iJ t−=  and the 

estimated coefficients B̂j  and Ĝ j . Then, the sample aggregated optimal output value for each 

bundle j is predicted by ( ) ( )*

1

ˆ ˆˆ=z z B x
I

p

j t jt j i j it j it

i

A l sφ ρ
=
∑ , where ( )1 ,...,z z zt t It= . We use the 

Laspeyres quantity index to derive the change in the output of crop bundle j supplied by local 

producers in response to changes in the prices and the exogenous variables between year 1 

and some year t. The local-supply quantity index is: 

 ( ) ( )
( )1

ˆ

ˆ

z
z

z

j ty

j t

j

A

A
φ =  (9) 
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Note that also in Eq. (9) the parameter a vanishes, thereby enabling to simulate changes in the 

supply index based on ˆ
j

B  without the need to identify a and b j . 

 We now turn to the demand side. Similar to the supply, we formulate a bundle quantity 

index as a function of price indices, which is based on macro-level (country wide) information 

on individual crops within each bundle. In order to simplify notation, and without loss of 

generality, assume that the number of different crops in each bundle j, 1, ..., 1j J= − , is 

identical and equal to K. Denote the price of crop k, 1, ...,k K= , of bundle j in year t as 
kj

tp , 

and the aggregated quantity of this crop demanded by local consumers as 
kj

tQ . Also assume 

that the country-wide aggregate demand function is of the constant-elasticity form: 

 ( )
kj

kj kj kj

t tQ h p
β

= ⋅  (10) 

where 
kjβ  is a known demand elasticity and 

kj
h  is a calibrated parameter. Assume further 

that all crops in each bundle j satisfy the criteria of a composite commodity; that is, their 

prices change proportionately.5 Define the Laspeyres demanded-quantity index, q

jtφ , which 

based on Eq. (10) becomes a function of the simulated price index p

jtφ , as: 

 ( )
1 1

1

1 1

1

( )
kj

K
kj kj p kj

jt
q p k
j jt K

kj kj

k

p h p

p Q

βφ
φ φ =

=

=
∑

∑
 (11) 

If the markets for bundle-j products are in equilibrium in the base period ( 1t = ), then 

( ) ( )1 1 1zq p y

j j jφ φ φ= = . In future years, xt  incorporates the modified values of all climate 

variables in relation to the base year, such that plugging x
t  into the supply-quantity index in 

Eq. (9) breaches the equilibrium. Without trade restrictions, prices change only if world prices 

change,6 and the gap between the demand quantity index ( )q p

j jtφ φ  and the supply quantity 
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index ( )zy

j tφ  represents the change in import or export of bundle-j's products. If trade is 

restricted by import tariffs, the set of local price indices  

p

tφφφφ  would change so as to meet 

equilibrium conditions in the local markets, unless price changes are large enough so as to 

turn import-tariff restrictions ineffective. Let  ( )1 1,...,p p p

Jφ φ −=φφφφ  be the set of import prices, 

which equals the world prices plus the country’s import tariffs. We simulate partial 

equilibrium by solving 

 
( ) ( )( )

1 2

1

min

. .

 

 

z

 

p
t

J
q p y

j jt j t

j

p p

t
s t

φ φ φ
−

=

−

≤

∑
φφφφ

φ φφ φφ φφ φ

 (12) 

Eq. (12) links the supply quantity index, which incorporates all the sample data points, to the 

demand quantity index, which is based on country-wide aggregated data, while taking into 

account trade restrictions through the implementation of import tariffs. 

The model provides the information required for calculating changes in welfare elements. 

The change in consumer surplus from the base period to some year t is computable for every 

bundle j, 1, ..., 1j J= − , based on Eq. (10): 1 1

1

1

( ) 1 ( )
1

kj kj
kjK

p kj

jt jtkj
k

h
CS pβ βφ

β
+ +

=

 ∆ = − +∑ . 

Aggregate local-farming revenues and imports at time t are given by ( ) 1 1

1

z
K

y kj kj

j t

k

p Qφ
=

∑  and 

( ) ( ) 1 1

1

z
K

y q p kj kj

j t j jt

k

p Qφ φ φ
=

 − ∑ , respectively. To compute local aggregate accounting profits one 

needs to subtract the explicit costs from the production value. However, as aforementioned, 

the estimated economic-cost function G wj i  differs from farm-i’s explicit costs by the 

presence of constrained factors multiplied by their respective shadow values. We distinguish 

between these two types of costs by defining ( )1 ,...,we e Ne

i i iw w=  as a subset of w
i  that 
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incorporates those variables associated with explicit costs (e.g., purchased production factors). 

Accordingly, farm-i‘s predicted total explicit cost at time t is 

 ( ) ( ) ( )
1

*

1

z z w
J

e

it it i ji it j it

j

C l s C
−

=

= ∑  (13) 

where ( )w e

j it
C  is a bundle-specific total per-hectare explicit-costs function, which is 

derivable from macro-level information and cost-and-return studies. We specify 

 ( ) 1

1 1 1

w
neK N

e kj kj kj it
j it j n ne

k n i

w
C L L C

w
α−

= =

= ∑ ∑  (14) 

where kj
L  is the country-wide aggregate land allocated to crop k in bundle j; jL  is the 

aggregate land allocated to bundle j such that 
1

K
kj

j

k

L L
=

= ∑ ; kjC  is the per-hectare production 

costs of crop k in bundle j; 
kj

nα  is the share of explicit-cost item n , 1,...,n N= , in kjC , and 

ne

itw  is the level of farm-i’s explicit-cost variable n at time t. Noteworthy, the explicit costs can 

serve as an additional link between the micro-level supply model and macro-level input-

demand models so as to treat input-prices endogenously. 

Data and Variables 

Our dataset for estimating the micro-level land-allocation model is a panel of 7,569 

observations, encompassing 743 agricultural communities (about 85% of all agricultural 

communities in Israel) over the years 1992-2002, provided by the Israeli Ministry of 

Agriculture and Rural Development (IMARD).7 Altogether the sample covers 264,000 

hectares per year—more than 60% of the agricultural land in Israel. The land allocated to each 

crop bundle is reported for the community as a whole, so we must treat each community as if 

it was a single decision-making unit. This is in fact true for about 40% of the sample 

communities, which are Kibbutzim, in which all economic activities, including agriculture, 

are managed collectively. Another 51% of the sample communities are Moshavim 
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(cooperative villages with individual farms). While each Moshav member can make her own 

land allocation decisions, being a member of a cooperative imposes some constraints on these 

decisions (Kimhi, 1998). In only 9% of the sample (private communities) agricultural 

decisions of the different farmers are completely independent of each other. 

Our data comprise aggregate land shares of four crop bundles: vegetables, field crops, 

fruits, and the reference bundle of non-cultivated land. In Table 1 we present the number of 

observations and average land shares (weighted by total community agricultural lands) of the 

8 different portfolios of crop bundles. In only 62% of the observations land is allocated to all 

three crop bundles; this highlights the need to account for corner solutions in the estimation. 

As expected, the land share of field crops is the largest with 54.7%, ahead of fruits (26.0%), 

then vegetables (15.0%), and non-cultivated areas (4.3%); the latter varies across portfolios 

between 20% in the communities that produce vegetables only, and 2% when production of 

vegetables is combined with field crops.     

Table 1 about here 

Table 2 reports sample’s means and standard deviations of the explanatory variables used 

in the estimation of the production value (x and ρj for the three bundles) and cost (w) 

functions. As aforementioned, the interaction x with ρj enables to identify the production- and 

cost-impacts of variables that appear in both x and w; however, since prices vary only with 

time, multicollinearity may still emerge. Herein we assign variables to either x or w based on 

our preliminary expectations of their dominant impact.   

Table 2 about here 

Precipitation and temperature data are from reports by the Israeli Meteorological Service 

(IMS) for 594 and 70 meteorological stations, respectively, covering the entire state of Israel 

during the years 1981-2002. We assigned the data from station locations to the coordinates of 

each agricultural community in our sample using the Inverse Distance Weighting (IDW) 
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method. The power 1 IDW specification was chosen due to its superior robustness (Kurtzman 

and Kadmon, 1999). The climate variables we use are annual average temperature and 

cumulative annual precipitation. For each year in the sample we consider the average 

temperature and precipitation along the previous 10-year period as those that have been 

considered by farmers in their agricultural land-use decisions. 

In the simulations of future periods we used forecasts provided by three Global 

Circulation Models (GCMs): CCSM4 (Gent et al. 2001), MIROC5 (Watanabe et al. 2010) and 

NorESM1-M (Bentsen et al. 2013); each GCM provides projections for a representative year 

in two future periods (2040-2060 and 2060-2080) under each of the four Representative 

Concentration Pathways (RCP2.6, RPC4.5, RPC6 and RPC8.5) adopted by the IPCC for its 

fifth assessment report (IPCC 2014). Table 3 presents the statewide average of the forecasted 

climate variables. The three models generally predict a considerable increase in average 

temperature throughout Israel at both future periods, from 19Co up to 25Co. Annual 

precipitations are expected to slightly decline at 2040-2060, and then severely reduce at 2060-

2080 by about 14% relative to the base-period level. 

Table 3 about here 

In addition to the climate variables we explain production by dummy variables for the 

type of community (Moshav and private communities; Kibbutz is the reference category), 

representing the production impacts of decision-making process and level of cooperation 

within each community (Kimhi, 1998). A dummy variable indicating whether agricultural 

land is dominated by light soils stands for the suitability of farmland to the different crop 

bundles. We also include dummy variables for Israel’s 19 Ecological Regions (as defined by 

Israel Central Bureau of Statistics (ICBS)) to capture spatial differences that may affect 

outputs (e.g., topographic and additional climate variables). 
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Output prices (ρj) are homogeneous across Israel, as evidenced by official data (IMARD, 

2011). Hence, we use country-wide annual output price indices reported by the ICBS for each 

bundle over the sample years. To reflect price differences between bundle outputs we multiply 

each bundle’s price index by the average price of its main crops, 1 1 1 1

1 1

K K
j kj kj kj

k k

p p Q Q
= =

= ∑ ∑  

(recall 1

kj
p  and 1

kj
Q  in Eq. (11)), where 1

kj
p  is taken from cost-and-return studies (IMARD) 

and 1

kjQ  is ICBS’s data on the crop’s country-wide annual output at 2002 (see Appendix B; 

all monetary values are in terms of US dollars in 2000). Following Kaminski et al. (2013) we 

use lagged moving averages to reflect price expectations that farmers use when making land-

use decisions. Since land shares of field crops and vegetables can be adjusted from year to 

year, their price indices were constructed based on the two previous years, whereas the 

previous four years were used for fruits.8 

The production-value ratios jr  used in Eq. (8) are computed by 
1 1

1 1 1 1

1 1

K K
kj kj k k

j

k k

r p Q p Q
= =

= ∑ ∑ , 

where Field-crops is used as the reference bundle ( 1j = ). 

For the per-hectare cost functions we use the distance to Tel Aviv to represent peripheral 

effects such as transportation costs and availability of purchased inputs and services, as well 

as alternative non-farm employment opportunities (Kimhi and Menahem, 2010). Water is a 

public property in Israel, and per-village total irrigation-water quotas are set administratively 

by the authorities; these quotas are introduced to capture the impact of water availability on 

production costs. Land assignment to farming is also centrally managed in Israel. The total 

agricultural land owned by the community represents potential diseconomies of land 

fragmentation and economies of scale. Finally, we include the previous-year annual price 

index of purchased agricultural inputs that are relevant for the vegetative sector (Kislev and 

Vaksin, 2003); this variable represents the explicit costs ( )w e

j
C  (recall eq. (13)). To reflect 
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explicit-cost differences across bundles we multiply this price-inputs index by a bundle-

specific factor, which is computed by 
1 1

K K
kj kj kj

k k

L C L
= =

∑ ∑  (recall eq. (14)), where kj
L  is country-

wide agricultural lands (IMARD) and kj
C  is the per-hectare costs9 taken from cost-and-return 

studies (IMARD) (Appendix B). 

In addition to the already mentioned data on kj
L , kj

C , 1

kjQ  and 1

kjp , the macro-level model 

requires the demand elasticities 
kjβ  (Eq. (10)). Israel is a net exporter of vegetables and 

fruits, whose imports are constrained by import tariffs, and a net importer of field-crop 

products, which are traded freely. Hence, the output prices faced by growers of vegetables and 

fruits are affected by both the local and international markets. As our micro-level 

disaggregated land-use data do not enable distinguishing between production to the local and 

international markets, we assume constant export shares of 29% and 22% of the total 

production value of vegetables and fruits, respectively (Finkelshtain et al. 2011).10 For the 

local markets of vegetables and fruits we adopt demand elasticity parameters from Hadas 

(2001) (Appendix B). Both growers and consumers of field crops face the world prices of 

field crops; hence, the demand elasticity equals the sum of import-demand and local-supply 

elasticities, weighted by the relative import and local-production quantities. Import demand 

elasticities, estimated based on the methodology developed by Kee et al. (2008), were taken 

from the World Bank (2012), and import quantities of field-crop products were obtained from 

the ICBS (Appendix B). With these elasticities and import values we employed Eq. (12) for 

simulating import response to price changes, and obtained a field-crops import demand 

elasticity of -1.60. To calculate the local-supply elasticity we used our estimated micro-level 

supply model to simulate field-crop production response to a price change, obtaining supply 

elasticity of 0.55. As local production of field crops constitutes 24% of the total consumption, 
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the demand elasticity equals -1.08. Figure 1 presents the resultant demand curves based on the 

calibrated ( )q p

j jφ φ  functions. 

Figure 1 about here 

As aforementioned, our analysis assumes partial equilibrium in the base period 

(represented by the year 2000). According to Finkelshtain et al. (2011), the local prices of 

vegetables and fruits are generally similar to their corresponding world prices. Therefore, 

imports of vegetables and fruits to Israel are negligible due to the presence of high import 

tariffs (reported in Appendix B). We calculated the average import price for the bundles of 

vegetables and fruits, weighted by crop-production quantities, and use these averages as the 

upper limit of prices (  

p

tφφφφ ) in the simulation of the restricted-trade scenario (Eq. (12)). The 

calculated average import prices (world prices + import tariffs) are higher by 36% and 23% 

than the average local prices for vegetables and fruits, respectively. As to forecasts of world 

prices, we took the trends projected by Eboli et al. (2010) by the use of a global CGE model.11 

Estimation Results 

We used the Stata fractional multinomial logit command (fmlogit) for estimating the 

coefficients Vj  for the three crop bundles, through maximization of the quasi likelihood 

function in Eq. (6) subject to the constraints in Eq. (8). We control for potential 

spatiotemporal autocorrelations in the residuals by clustering observations according to years 

and 60 natural regions.12 We include quadratic levels of the precipitations, temperature, 

agricultural land and water-quota variables to capture non-linear responses. The estimated 

coefficients are reported in Table 4. 

Table 4 about here 

Interpretation of the estimation results is facilitated by Table 5, where we present the 

marginal effects of the explanatory variables on optimal land shares and economic profits.13 
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Table 5 about here 

In the production side, both precipitation and temperature have positive and significant 

marginal effects on the overall cultivated land, implying that farmers in wetter and warmer 

regions benefit from devoting more arable land to agricultural production. These climate 

variables also positively affect the total economic profit, with different impacts across 

bundles. Farmers in higher-precipitation areas benefit from growing field crops and fruits 

more than vegetables; this result is congruent with the relative advantage of the southern arid 

part of Israel in greenhouse vegetable production, as mentioned by Fleischer et al. (2008). 

Moreover, higher temperatures harm fruits’ profits, which may be explained by the need of 

deciduous trees for sufficient cold hours to flourish. 

Moshavim tend to grow less field crops than Kibbutzim and private communities, and 

their total economic profits are lower. Similar trends are observed with respect to light soil. 

Regarding output prices, as expected theoretically, all bundles exhibit statistically significant 

positive own-price impacts and negative cross-bundle impacts on economic profits. 

The marginal effects of the cost variables on total economic profits also exhibit expected 

signs. Peripheral communities face lower profits, which is explainable by higher 

transportation costs and lower availability of production factors. Larger irrigation-water 

quotas increase profitability. However, the effect is statistically insignificant, indicating that 

water quotas do not constitute effective constraints; this matches the conclusion of Feinerman 

et al. (2003) that water prices since early 1990s were the factor dictating agricultural water 

consumption in Israel rather than water quotas. By examining the water-quotas effects in 

relation to those of precipitation we find irrigation water as a substitute to precipitation in the 

production of fruits and vegetables, and as a supplemental factor in field-crops production; 

this finding coincides with the fact that, while vegetables and fruits are usually irrigated, the 

field-crops bundle includes both rain-fed and irrigated crops. The positive sign of the 
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community’s total agricultural land points at the presence of economies of scale. Finally, 

prices of production inputs negatively affect total economic profits (without statistical 

significance). Thus, the effect of both input and output prices on economic profits complies 

with economic theory. 

Simulations 

Using the estimated model we simulate production of the three crop bundles, where, ceteris 

paribus, climate variables change as reported in Table 2,14 and world prices vary according to 

Eboli et al. (2010). We study the consequences of these changes under six scenarios with 

respect to policies and farming adaptation strategies. 

Scenario 1 simulates variation in the climate variables under the prevailed policy of 

constraining trade by use of import tariffs. Tables 6 and 7 report the results in terms of 

changes relative to the sample period, averaged across the three GCMs. All four RCPs for the 

two periods exhibit similar trends of changes in output prices ( p

jtφ ), quantities demanded ( q

jtφ ) 

and supplied ( y

jtφ ), and land shares ( 1jt js s ) (Table 6). The supplies of vegetables and field 

crops increase, whereas that of fruits declines. Local output prices of vegetables reduce, while 

those of fruits rise up to their respective upper bound, p

jtφ ; consequently, the demanded 

quantity of fruits exceeds the local supply such that import emerges. The prices of field crops 

change marginally with the world price; hence, import remains stable, and the extended 

supply of field-crop products may go mainly to the world markets. 

Table 6 about here 

By comparing the local supply indices ( y

jtφ ) to the land-share indices ( 1jt js s ) one can 

assess the role played by the changes in per-hectare productions versus those of land 

allocations. The simulations indicate that field-crops productivity is to be more than doubled, 

which in turn drives expansion of field-crop lands by about 10% at the expense of vegetables 
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and fruits. Vegetables’ per-hectare supply also increases, but to a lesser extent than that of 

field crops; therefore, vegetables’ land-share shrinks. Fruit production dramatically declines 

by about 40-60%, leading to land-share reduction of about 25%. 

Table 7 about here 

Table 7 reports changes in statewide agricultural accounting profit, consumer surplus and 

their sum (i.e., welfare) under Scenario 1. Apparently, climate change is generally beneficial 

to Israeli farmers, particularly to field-crop growers, less to vegetable farms, and not at all to 

fruit producers. Altogether the Israeli vegetative agricultural sector is expected to increase its 

accounting profits by about 7%. Surpluses of local consumers are to be slightly declined, 

particularly due to the shift in fruit prices. Thus, the overall expected welfare-change is 

positive. This result prevails under both future periods and the four RCPs, with the largest 

(lowest) change under RPC8.5 (RCP2.6).  

We turn to study trade-policy implications. According to OECD (2014), the PSE 

(Producer Support Estimate) measure for Israel indicates that the overall support to farmers is 

lower than in the average OECD country, but the fraction of trade-distorting support policies, 

particularly the MPS (Market Price Support), is considerably larger; hence, compliance with 

the WTO (World Trade Organization) rules requires removing import tariffs. This policy is 

examined in Scenario 2, where we simulate abolishment of tariffs such that import prices of 

all vegetative agricultural products equal their world-price counterparts, as forecasted based 

on Eboli et al. (2010). Table 8 reports the respective welfare measures. 

Table 8 about here 

Compare Table 8 to Table 7. The accounting profits of vegetable and field-crop growers 

slightly increase, whereas those producing fruits face considerable profit decline, particularly 

because import of fruits amounts to more than 50% compared to merely 20% in Scenario 1. 

Consumers’ surpluses associated with both vegetables and fruits rise. The overall impact of 
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the tariffs removal on welfare varies between RCPs and periods. In general, under large 

climate changes the benefits to consumers exceed the losses to producers such that social 

welfare augments. 

In Scenario 3 and 4 we isolate the effects of precipitation and temperature, respectively. 

To this end, we rerun Scenario 1 while changing only the respective variable. This exercise 

(Table 9) reveals that the aforementioned climate-change-driven welfare benefits stem from 

the huge increase in temperature, as forecasted by all GCMs (Table 2). The precipitation 

changes cause in most cases welfare reductions that are much smaller than the temperature’s 

positive effects. 

Table 9 about here 

Under each of the latter four scenarios farmers adapt to the changes in climate variables by 

reallocating their land among the three bundles. In Scenario 5 we assume that farmers also 

adapt by offsetting the change in precipitation by applying additional irrigation water. This 

scenario is equivalent to Scenario 4, except that the input-price index varies according to the 

costs associated with changing the irrigation so as to compensate for the change in 

precipitation. The share of irrigation costs in the total explicit costs of each crop in each 

bundle (
kj

nα  in Eq. (14)) is computed using cost-and-return studies (IMARD).15 Note that 

increasing irrigation implies higher agricultural water consumption, which is possible if water 

quotas do not bind, or otherwise they should to be extended; as aforementioned, we find water 

quotas ineffective, and therefore do no need to include in the simulation water-quota changes. 

Scenario 5 (Table 9) in comparison to Scenario 1 (Table 7) shows that offsetting the 

precipitation changes by irrigation is socially unbeneficial. Nevertheless, from the farmers’ 

point of view this adaptation strategy is warranted. 

Our last issue is the role played by land reallocation in the adaptation to the projected 

climate changes. In this case, rather than the accounting profit, the economic profit (
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( )*

1 1

z V z
I J

jit it j jit

i j

s
= =
∑∑ ) is the appropriate measure, as it dictates land-use adaptation. Based on 

comparison to the economic profits without land responses ( 1

1 1

V z
I J

ji j jit

i j

s
= =
∑∑ ), we attribute 

about 18% of the overall profit increase due to climate change (  

( ) ( )* *

1 1 1

1 1 1 1

z V z z V z
I J I J

jit it j jit ji i j ji

i j i j

s s
= = = =

−∑∑ ∑∑ ) to land adaptation. 

Concluding Remarks 

This paper develops an integrated micro-macro structural econometric framework for 

assessing climate-change impacts on agricultural production under equilibrium in the food 

markets. The linkage between micro and macro levels is particularly important as 

governments and international organizations alike are called upon to revise current policies in 

order to provide adaptation options to climate change, and to integrate agricultural policies 

within a broader set of policies targeting sustainable development and natural resource 

management (Howden et al., 2007). Taking food prices into consideration is extremely 

important given their relevance to the critical issues of poverty, food security and malnutrition 

around the world. Indeed, our empirical analysis for the case of Israel shows different 

simulation results when import tariffs are abolished compared with the more realistic case of 

restricted trade. 

Agricultural adaptation to climate change calls for governmental interventions because of 

equity concerns and prioritization (e.g., Lobell et al. 2008). Impacts of some interventions can 

be directly identified from the results of this paper. The results also indicate directions for 

further research and extensions. First, heterogeneous impacts of climate change on both 

producer and consumer welfare may call for specific policy attention; e.g., under our 

specifications consumers are adversely affected whereas producers benefit from the projected 

future climate conditions. This would suggest that a transfer scheme (e.g. food price consumer 
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subsidies financed by export or production taxes) from producers to consumers could be 

politically acceptable. 

Second, improved adaptation technologies require R&D investments with a public good 

component. Identification of the technological channels through which projected consumer 

and producer surpluses change is useful to promote a “directed technological change” with 

higher benefit-cost ratio and more effective public and private spending. For example, our 

simulations predict that the surpluses of both producers and consumers of fruits in Israel are 

going to decline, whereas the surpluses associated with vegetables are about to increase for 

both sectors. Hence, proactive adaptation efforts should be directed toward fruits. Likewise, 

specific technology components of the agricultural systems could also be targeted, as done in 

Kaminski et al. (2013). 

Third, our empirical framework can be generalized to derive a broader and integrated 

assessment of climate-change agricultural-related impacts on social welfare by considering 

agricultural amenities and environmental externalities in the simulations. Upon availability of 

sufficient valuation studies and applicability of benefit-transfer methods, the impact of climate 

change on ecosystem services and landscape value through agricultural productivity 

adjustments and land-use adaptation (e.g., Kan et al., 2008) could also be assessed (e.g., 

Bateman et al. 2013). This would also require a refinement of the econometric model to 

enable estimation of intra-growing season input applications and environmental effects such 

as polluting effluents. In turn, this could change conclusions on the efficiency and equity of 

agricultural policies and public investments targeted at climate-change adaptation, since total 

climate-driven effects on social welfare can significantly differ from those on private 

consumers and producer surpluses. For instance, the projected conversion of land planted with 

fruit orchards and vegetables into land used for field-crop production is presumably coming 

along with benefits in agricultural amenities such as landscape and recreational services (open 
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fields versus greenhouses and protected crops) as well as changes in the use of polluting 

inputs and irrigation water. 

Finally, as aforementioned, the model can be linked through the cost variables also to 

input-supply models. For example, integrating the agricultural supply model to a hydro-

economic model (e.g., Reznik et al., 2017) would enable considering water prices 

endogenously. Moreover, applying the model in conjunction to more sophisticated macro 

models like CGE can be used for assessing a range of additional issues associated with 

agricultural production and policies; for example, the development of production supportive 

infrastructures and changing other agricultural protection policies such as subsidies. 
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Table 1 - Observations and land shares in crop-production portfolios 

Number of Land sharesa 
Portfolio  observations Vegetables Field crops Fruits Not cultivated 

Fruits 608 0.000 0.000 0.830 0.170 

Field crops 44 0.000 0.963 0.000 0.037 

Field crops & Fruits 1,173 0.000 0.606 0.343 0.050 

Vegetables 53 0.800 0.000 0.000 0.200 

Vegetables & Fruits 817 0.319 0.000 0.543 0.138 

Vegetables & Field crops 158 0.182 0.794 0.000 0.024 

Vegetables & Field crops & Fruits 4,716 0.181 0.532 0.241 0.046 

Total 7,569 0.150 0.547 0.260 0.043 

a. Weighted by communities’ total agricultural land.
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Table 2 - Descriptive statistics of the explanatory variables 

Variable Units Mean Std. 

Production (x)    

Precipitation mm/year 449.8 87.83 

Temperature Co 19.29 0.546 

Moshav dummy 0.544 0.498 

Private community dummy 0.094 0.292 

Light soil dummy 0.566 0.496 

Output price indices (ρρρρj)    

Vegetables price index index 0.526 0.068 

Field-crops price index index 0.663 0.081 

Fruits price index index 0.654 0.127 

Costs (w)    

Distance to Tel-Aviv km 71.79 41.45 

Water quota 106×m3/year 1.393 0.949 

Agricultural land 103×m2 6,217 5,963 

Vegetables inputs price index index 0.522 0.107 

Field-crops inputs price index index 0.489 0.100 

Fruits inputs price index index 1.654 0.338 
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Table 3 – Future forecasts of state-wide average climate variables 

Period RCP 
Climate 
Model 

Precipitations 

(mm/year) 

Temperature 

(Co) 

Base 
  

450 19 

2040-2060 

2.6 

CCSM4 463 22 

MIROC5 424 23 

NorESM1 464 23 

Average 450 23 

4.5 

CCSM4 443 23 

MIROC5 439 24 

NorESM1 387 23 

Average 423 23 

6 

CCSM4 428 23 

MIROC5 433 23 

NorESM1 500 23 

Average 454 23 

8.5 

CCSM4 381 24 

MIROC5 406 24 

NorESM1 395 24 

Average 394 24 

Average 
 

430 23 

2060-2080 

2.6 

CCSM4 423 23 

MIROC5 426 23 

NorESM1 397 23 

Average 415 23 

4.5 

CCSM4 421 23 

MIROC5 398 25 

NorESM1 336 23 

Average 385 24 

6 

CCSM4 401 24 

MIROC5 399 24 

NorESM1 381 23 

Average 393 24 

8.5 

CCSM4 367 25 

MIROC5 360 25 

NorESM1 334 25 

Average 353 25 

Average 
 

387 24 
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Table 4 - Estimated coefficients of land-share equations (Eq. (6))a 

Log likelihood -7657.6 
  

Wald χ2(91) 29144.1 
  

Variable Vegetables Field crops Fruits 

Production 
   

ρj × Precipitation 0.008** 0.002 0.008*** 

ρj × Precipitation2 -1.53×10-5*** 1.17×10-6 -4.96×10-6* 

ρj × Temperature -4.615** -0.622 -0.557 

ρj × Temperature2 0.125** 0.027 0.015 

ρj × Moshav -2.019*** -2.917*** -1.032*** 

ρj × Light soil -0.661*** -0.511*** 0.171*** 

ρj 47.683** 3.31 5.831 

Costs 
   

Distance to Tel-Aviv -0.006*** -0.011*** 0.005*** 

Water quota 0.546*** 0.441*** 0.105 

Water-quota2 -0.147*** -0.113*** -0.103*** 

Agricultural land 0.096*** 0.132*** 0.09*** 

Agricultural-land2 -0.002*** -0.002*** -0.002*** 

Inputs price index -1.75*** 0.78*** -1.547*** 

Constant -0.293 1.37*** 0.604*** 

*** indicates significance at 1%, ** indicates significance at 5%, * indicates significance at 10% 

a. Coefficients for Ecological Regions are not reported. The dummy variable for private communities was 
omitted due to collinearity. 
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Table 5 - Marginal effects 

 

Land share Economic Profit 

Variable Vegetables Field crops Fruits 
Total 

cultivated Vegetables Field crops Fruits Total 

Production 
       

 

Precipitation -0.001*** 3.23×10-4*** 4.35×10-4*** 6.46×10-5** -0.001*** 0.002*** 0.002*** 0.002*** 

Temperture -0.007 0.062*** -0.047*** 0.008** 0.009 0.26*** -0.084** 0.185*** 

Moshav 0.033*** -0.294*** 0.192*** -0.069*** -0.131*** -1.499*** 0.118*** -1.512*** 

Light Soil -0.027*** -0.076*** 0.093*** -0.01*** -0.082*** -0.314*** 0.204*** -0.191*** 

Vegetables price index (ρv) 0.455*** -0.245*** -0.179*** 0.03*** 1.005*** -0.515*** -0.321*** 0.168*** 

Field-crops price index (ρf) -0.02*** 0.068*** -0.042*** 0.007*** -0.02*** 0.269*** -0.075*** 0.174*** 

Fruits price index (ρp) -0.102*** -0.3*** 0.439*** 0.037*** -0.105*** -0.631*** 1.445*** 0.709*** 

Costs         

Distance to Tel-Aviv -3.3×10-4 -0.003*** 0.003*** -2.3×10-4*** -0.001*** -0.011*** 0.007*** -0.005*** 

Water quota 0.002*** 0.005*** -0.007*** -1.06×10-4 0.004*** 0.016*** -0.018*** 0.002 

Agricultural land -0.001 0.011*** -0.005*** 0.004*** 0.01*** 0.069*** 0.013*** 0.093*** 

Inputs price index -0.205*** 0.552*** -0.372*** -0.024* -0.482*** 1.517*** -1.181*** -0.147 

*** indicates significance at 1%, ** indicates significance at 5%, * indicates significance at 10% 
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Table 6 – Climate-change impact on partial-equilibrium indices under constrained-trade policy (Scenario 1)  

 
 Price Index (

p

jtφ ) Demand Quantity Index (
q

jtφ ) Supply Quantity Index (
y

jtφ ) Land Share Index ( 1jt js s ) 

Period RCP Vegetables 
Field 
Crops Fruits Vegetables 

Field 
Cropsa Fruits Vegetables 

Field 
Crops Fruits Vegetables 

Field 
Crops Fruits 

2040-
2060 

2.6 0.88 1.03 1.26 1.16 1.00 0.76 1.16 2.26 0.68 0.95 1.08 0.85 

4.5 0.82 1.03 1.26 1.25 1.00 0.76 1.25 2.39 0.60 0.94 1.09 0.83 

6.0 0.87 1.03 1.26 1.18 1.00 0.76 1.18 2.37 0.66 0.94 1.08 0.84 

8.5 0.73 1.03 1.26 1.43 1.00 0.76 1.43 2.75 0.49 0.93 1.11 0.79 

Average 0.83 1.03 1.26 1.26 1.00 0.76 1.26 2.44 0.61 0.94 1.09 0.82 

2060-
2080 

2.6 0.84 1.06 1.28 1.23 1.00 0.74 1.23 2.26 0.61 0.94 1.08 0.84 

4.5 0.74 1.06 1.28 1.43 1.00 0.74 1.43 2.71 0.48 0.93 1.10 0.79 

6.0 0.76 1.06 1.28 1.39 1.00 0.74 1.39 2.63 0.50 0.93 1.10 0.80 

8.5 0.63 1.06 1.28 1.73 1.00 0.74 1.73 3.31 0.35 0.92 1.13 0.75 

Average 0.74 1.06 1.28 1.44 1.00 0.74 1.44 2.73 0.49 0.93 1.10 0.79 

a. For field crops 
q

jtφ  stands for the change in the imported quantities. 
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Table 7 – Climate-change impact on statewide welfare measures under constrained-trade policy (Scenario 1), (106 $/year) 

 
 Accounting Profita Consumer Surplus Welfare 

Period RCP Vegetables 
Field 
Crops Fruits Total Vegetables 

Field 
Crops Fruits Total Vegetables 

Field 
Crops Fruits Total 

2040-
2060 

2.6 36 253 -61 228 70 -26 -145 -101 107 228 -207 128 

4.5 44 279 -121 201 105 -26 -145 -66 150 253 -267 135 

6.0 39 275 -78 236 76 -26 -145 -95 115 249 -224 141 

8.5 62 350 -208 204 167 -26 -145 -3 230 325 -354 200 

Average 45 289 -117 217 105 -26 -145 -66 150 264 -263 151 

2060-
2080 

2.6 41 263 -110 194 95 -44 -156 -105 136 219 -266 89 

4.5 61 354 -209 206 164 -44 -156 -36 225 310 -365 170 

6.0 57 339 -192 204 152 -44 -156 -48 209 295 -349 155 

8.5 90 477 -306 261 251 -44 -156 50 341 433 -463 312 

Average 62 359 -204 217 166 -44 -156 -34 228 314 -361 182 

a. Accounting profits at the base period amount to $119, $656, $2,146 and $2,921 million/year for vegetables, field crops, fruits and overall, respectively.  
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Table 8 – Climate-change impact on statewide welfare measures under abolishment of import tariffs (Scenario 2), (106 $/year) 

 
 Accounting Profit Consumer Surplus Welfare 

Period RCP Vegetables 
Field 
Crops Fruits Total Vegetables 

Field 
Crops Fruits Total Vegetables 

Field 
Crops Fruits Total 

2040-
2060 

2.6 40 266 -250 57 77 -26 -15 36 117 240 -265 93 

4.5 48 291 -289 49 112 -26 -15 71 160 265 -304 120 

6.0 43 288 -263 68 82 -26 -15 41 125 262 -277 110 

8.5 66 361 -346 82 174 -26 -15 133 239 336 -361 214 

Average 49 302 -287 64 111 -26 -15 70 160 276 -302 134 

2060-
2080 

2.6 45 275 -281 39 102 -44 -26 32 147 231 -307 71 

4.5 65 365 -346 85 170 -44 -26 99 235 321 -372 184 

6.0 61 350 -335 77 158 -44 -26 87 219 306 -361 164 

8.5 94 487 -409 172 256 -44 -26 186 350 443 -435 358 

Average 66 370 -343 93 171 -44 -26 101 238 325 -369 194 
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Table 9 - Impacts on welfare measures of changes in precipitation only (Scenario 3), temperature only (Scenario 4), and offsetting 

precipitation change by irrigation (Scenario 5) (106 $/year) 

 

Scenario 3 

Change in Precipitation Only  

Scenario 4 

Change in Temperature Only 

Scenario 5 

Offsetting Precipitation Change by 
Irrigation 

Period RCP 
Accounting 

Profit 
Consumer 

Surplus Welfare 
Accounting 

Profit 
Consumer 

Surplus Welfare 
Accounting 

Profit 
Consumer 

Surplus Welfare 

2040-
2060 

2.6 10 -11 -1 218 -106 112 222 -104 118 

4.5 -5 -13 -17 229 -88 141 212 -96 115 

6.0 12 -11 1 223 -96 127 230 -92 138 

8.5 -21 -19 -40 266 -43 223 227 -63 164 

Average -1 -13 -14 234 -83 151 223 -89 134 

2060-
2080 

2.6 -4 -35 -39 238 -134 104 214 -146 68 

4.5 -20 -48 -68 284 -81 204 239 -104 135 

6.0 -16 -40 -56 271 -90 181 232 -110 122 

8.5 -37 -60 -97 358 -11 347 292 -46 246 

Average -19 -45 -65 288 -79 209 244 -102 143 
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Figure 1 - Demand curves of the three crop bundles 
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Appendix A – Derivation of the optimal land-share in Eq. (3) 

The farmer's problem is (we omit the farm index for notation brevity): 

 ( )
1 1 1

1
max = ln . . 1

s
v z      

J J J

j j j j j j

j j j

s s s s t s
a= = =

Π − ≤∑ ∑ ∑  (A1) 

Using the FOC 

 ( )( )1
ln 1 0v z

j j j

j

s
s a

λ
∂Π

= − + − =
∂

 (A2) 

we get the land share: 

 
( )( )

( )
exp

exp 1

v zj j

j

a
s

aλ
=

+
 (A3) 

Substituting Eq. (A3) into the land constraint in (A1), 

 ( ) ( )( )
1 1

exp 1 exp 1v z
J J

j j j

j j

s a aλ
= =

= − − =∑ ∑  (A4) 

we get the shadow value 

 

( )( )
1

ln exp 1v z
J

j j

j

a

a
λ =

 
− 

 =
∑

 (A5) 

which we substitute back into the land share in Eq. (A3) to get Eq. (4). 
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Appendix B – Nationwide data at the base year for the crops in the three crop bundles  

 
Crop 

Land 

( kj
L , 

hectares) 

Quantity 

(  1

kjQ , 

ton/year) 

Price 

(  1

kjp , 

$/ton) 

Demand 
Elasticity 

( kjβ ))))    

Explicit 
cost 

( kjC , 
$/hectare) 

Import 
tariff 

(% of world 
price) 

Vegetables 
     

 

Watermelon 15,461 184,596 216 -0.7 8,917 29 

Melon 2,888 48,993 654 -0.7 2,004 47 

Tomato 4,291 288,621 1,178 -0.7 23,320 42 

Strawberry 454 9,614 2,493 -0.7 66,511 35 

Potato 12,742 196,680 461 -2.2 10,060 78 

Cucumber 1,827 67,870 536 -0.3 35,211 12 

Eggplant 798 28,517 423 -0.3 6,994 20 

Pepper 2,475 50,946 818 -1.3 21,586 32 

Zucchini 971 17,968 560 -1.1 2,059 17 

Onion 3,210 53,860 313 -1.1 8,811 61 

Carrot 1,265 50,938 332 -1.5 24,443 58 

Lettuce 1,262 22,441 540 -1.1 26,771 10 

Cabbage 1,980 37,082 292 -1.1 15,029 39 

Cauliflower 1,579 18,177 413 -1.1 12,813 29 

Celery 521 10,606 551 -1.3 5,357 19 

Radish 415 7,243 421 -1.1 5,384 111 

Field crops – local 
    

 

Cotton, raw 11,646 92,668 991 - 2,663 0 

Chickpea 7,558 9,328 998 - 296 0 

Corn 5,233 98,766 358 - 3,215 0 

Pea 2,162 8,945 626 - 597 0 

Peanuts 3,744 24,169 1,592 - 1,196 0 

Sunflowers 7,680 19,447 1,340 - 994 0 

Wheat 83,646 160,260 260 - 74 0 

Barley 8,364 5,342 257 - 60 0 

Hay 64,294 86,188 146 - 73 0 

Field crops - import 
    

 

Cotton, lint - 12,381 16,213 -0.06 - - 

Chickpea - 8,000 998 -0.7 - - 

Corn - 796,836 358 -1.6 - - 

Pea - 2,400 626 -1.5 - - 

Peanuts - 2,901 1,592 -0.3 - - 
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Wheat - 1,582,069 260 -2.0 - - 

Barley - 233,808 257 -0.85 - - 

Fruits 
    

 

Apple 5,506 119,316 987 -1.9 6,186 39 

Pear 1,676 25,055 1,190 -1.3 4,274 39 

Peach 5,630 51,298 1,177 -0.7 7,839 21 

Grapes 11,740 95,295 923 -1.0 5,959 31 

Banana 2,382 94,590 762 -1.5 6,456 37 

Avocado 5,709 69,157 1,180 -3.8 2,082 40 

Dates 3,441 12,276 3,297 -5.3 6,640 48 

Orange 3,303 376,476 377 -0.4 1,277 5 

Grapefruit 7,763 520,864 343 -0.2 2,332 24 

Lemon 1,726 45,122 432 -1.4 2,696 27 

Olive 20,034 34,450 1,262 -1.7 1,664 49 

Almond 2,979 4,086 2,110 -1.7 1,074 9 
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Notes 

                                                             
1  While the linear function is adopted to facilitate the analysis, the model can be easily 

extended; for example, Kaminski et al. (2013) specified 
j

y  as a quadratic function of per-

hectare bundle-specific endogenous inputs with structural parameters, and thereby 

accounted for the impact of climate change through optimal input applications and 

identified the effect of climate variables on attributes of agricultural production 

technologies. 

2  The resultant linear equations are of the form ( )* *ln V zji Ji j ji jis s u= + , where jiu  is an 

error term. 

3  One may employ simultaneous estimation of both prices and land shares; however, this 

poses two challenges: (i) an identification strategy and the availability of instrumental 

variables for regional prices in the micro-level estimations of the econometric model, (ii) a 

tractable partial or general-equilibrium model with simultaneous and endogenous price 

determination adjusting with the outputs of the micro-level estimations. 

4
  Kaminski et al. (2013) show that, to enable identification of the parameters jv  for

1,..., 1j J= − , a can be calibrated by the use of panel data and additional information on crop 

profitability. 

5  We employ this assumption to derive bundle-level quantity indices, since disaggregated 

land-use data are usually available only for bundles of crops, whereas aggregated quantities 

and prices may be available for the various crops in each bundle.  

6  According to Finkelshtain and Kachel (2009), Israel's agriculture is small enough for not 

affecting world food prices. While the herein methodology can be employed in a world-

level CGE model for simulating climate-change impacts on world prices under equilibrium, 

our analysis is limited to the case of Israel’s local market under partial equilibrium.   
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7  Data is not available for later years due to changes in the data collection procedure.  

8  The number of lags was determined after ARIMA estimations using R² and Akaike-

Schwartz information criteria.  

9  For consistency with the estimated coefficients ( )( ),V b γ γ
j j j J

a a= − −  we computed kjc  

while subtracting the overhead assigned in the cost-and-return studies to the non-cultivated 

agricultural lands; i.e., the reference bundle. 

10  The allocation of products between the local and international markets frequently occurs at 

the wholesale markets; that is, beyond the control of farmers (Kachel, Y., personal 

communication, May 2014).  

11  These projections represent the effect of climate change in comparison to a baseline 

scenario without the climate-change impact. In our case we simulate changes in climate 

variables and prices where all other elements of the economy are assumed to remain at their 

base-year levels.  

12 These regions were determined by the ICBS (2010) based on criteria such as topography, 

climate, demography and history. Thus, the clusters capture those spatial autocorrelations of 

measurement errors in the dependent and independent variables between communities of the 

same region that are not necessarily diminishing with Euclidean distance (e.g., as assumed 

by the Moran’s I statistic). For example, due to the presence of topographic (and therefore 

climatic) boundaries (e.g., between valleys and highlands) and intra-regional processing and 

marketing cooperatives, the correlation in measurement errors between two adjacent 

communities from different regions may be considerably lower than the correlation of each 

one of them with remote communities within the region. 

13  Standard errors were estimated using the bootstrap procedure. 

14  The predicted responses to temporal changes in climate variables are based on the spatial 

variations of these variables across communities in the sample period. Hence, the larger the 
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spatial variability in comparison to the temporal variation, the larger the validity of the 

simulation predictions for changed climate conditions; in our case, the spatial variance 

between communities captures 96% and 69% of the total spatiotemporal variance of 

precipitation and temperature, respectively. 

15   Irrigation constitutes 9%, 38% and 17% out of total explicit costs of vegetables, field 

crops and fruits, respectively. 


