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Abstract— The stock returns are vulnerable to manipulation of 

peculiar forms. We propose a novel method, the Intelligent 

Portfolio Performance Optimization System – IPPOS that 

extracts hidden patterns out of the vast accounting data, financial 

statements, and other values, elaborating them on a new Jordan 

Elman hybrid network to provide safer financial evaluations. 
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I. INTRODUCTION 

The weak explanatory power of the Gaussian probability 

distributions on returns and quadratic investor preferences 

does not support adequately the Markowitz’s mean-variance 

criterion under the von Neumann-Morgenstern axioms of 

choice, (1992, 2009). The Power Utility demonstrated a 

marginal superiority on the Quadratic function, emphasizing 

on skewness, Loukeris et al. (2009). As investors prefer 

positive skewness, to earn high profits from extreme events, 

Boyle and Ding (2005), low kurtosis in lower risk probability 

because of the extreme outcomes in both sides of the 

distribution, Athayde and Flores (2003), Lai, Yu and Wang 

(2006). Thus more accurate detection of preferences require 

further higher moments, Loukeris et al. (2014a), that minimize 

the uncertainty of the information and thus false evaluation of 

stock prices either endogenous, or exogenous. Actually the 

rational utility maximizers lack of descriptive accuracy as they 

define theoretically the investment behavior, failing to 

approach the real behavior, Subrahmanyam (2007). Usual 

patterns such as overconfidence on private signals causes 

overreaction, such as the BE/ME effect, the long-run reversals, 

that cause momentum. The loss aversion, Barberis et al. 

(2001) is a robust cause for price fluctuations.  

Whilst a strong trend of disposition, to sell winners too soon 

and hold on to losers too long, although past winners do better 

than losers, is observed Shefrin and Statman (1984a). 

Characteristics of gender such that the superiority of women’s 

conservative tactic, the low frequency of trading, 

environmental, as the good weather, or other non-rational 

parameters determine the quality of investments. Considering 

all these parameters we move forth to create an integrated 

model or portfolio selection, the IPPOS, elaborating models 

Hybrid neuro-genetic models from the Generalized 

FeedForward and the Jordan Elma family. The optimal 

selection problem within a portfolio follows a two phase 

process. We investigate the first phase of the optimization 

problem. The single period model is evaluated, as we 

introduce six different Generalized FeedForward and Jordan 

Elman hybrid net models of 11 different topologies each and 4 

hybrid forms with Genetic Algorithms, to calculate the 

efficient frontier surface, in a quintuple scope: i) to 

analytically investigate the behavior of investors in higher 

moments, ii) to introduce an advancement of the isoelastic 

utility, iii) to advance the Markowitz’s portfolio theory, 

considering apart from in fundamentals evaluation, other 

available data, iv) to evaluate the performance of the 

Generalized FeedForward and the Jordan Elman networks in 

neuro-genetic hybrids or neural network in diferent topologies 

in a new learning process, v) to introduce the integrated model 

IPPOS in optimal portfolio selection problems.  

This research in Section 2 provides description on the markets, 

the higher moments, the utility, the investiment behavior, 

Section 3 describes the methodology.  The Section 4 describes 

the data. Section 5 includes the results and Section 6 the 

conclusions. 

 

II. INVESTMENT BEHAVIOR  

The expected returns alter in the cross-section for multiple 

reasons, one of which is the risk differentials across stocks. 

We proceed on a further analysis of risk puts emphasis on the 

connection of loss to risk aversion in our model, considering 

also non-rational parameters such as, gender, time, firm’s 

proximity to investor, etc, incorporating the non-linear effects. 

The loss-aversion and the non-linear constraints are examined 

into the integrated Intelligent Portfolio Performance 

Optimization System (IPPOS) we introduce. 

The returns distributions are not n.i.i.d., although the Fractal 

Markets Hypothesis-FMH appears to be quite capable to 

describe the markets complexity. We model investment 

preferences including terms of non-linearity, and non-
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causality. Investors allocate their utility between fears and 

earnings. They seek a reasonable level of return, under the fear 

of loss, concluding on doubtful decisions. During bullish 

periods the fear of losing excess profits, whilst in bearish the 

fear of maximizing losses, increase non rational herding 

reactions on markets. Loukeris et al. (2014a, b), Loukeris et al. 

(2016), , Loukeris et al (2015b), Loukeris et al (2015a), 

Loukeris et al (2015) elaborated further higher moments on 

the utility function of the HARA family (Hyperbolic Absolute 

Risk Aversion). Based on the 5
th

 of hyperskewness and the 6
th
 

of hyperkyrtosis moments Loukeris, Bekiros, and Eleftheriadis 

(2016) as:  

 

Ut(Rt+1)=aEt(Rt+1)-bVart(Rt+1)+cSkewt(Rt+1)-dKurtt(Rt+1)+ 

eHypSkewt(Rt+1)–fHypKurt t(Rt+1)                                  (1) 

 

Where 

                           Kurtt(Rt+1) = Vart
2
(Rt+1)                        (2) 

 

                           HypKurtt(Rt+1) = Vart
4
(Rt+1)                     (3) 

 

                      Skewt(Rt+1) = Ε(xi-μ)Vart(Rt+1)                  (4) 

 

                   HypSkewt(Rt+1) = Ε(xi-μ)Vart
2
(Rt+1)               (5)  

 

The general form of the utility function is: 
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where λν is the depth of accuracy on investors utility 

preferences to risk, aλν a constant on investors profile: aλν = 1 

for rational risk averse individuals that follow linear reasoning 

models with accepted causality levels, aλν ≠ 1 for the non-

rational, xi the value of return i in time t. 

The Isoelastic Utility, a CRRA function is on the risk averse 

investors: 

                  
1 1

, (0,1) (1, ]
1

log( ), 1

W

U

x








 
  

 
 

       (7) 

  

where, W the wealth, λ a measure of risk aversion.  
 

III. METHODOLOGY 

 

The convex problem of quadratic utility maximization, 

Markowitz (1952), is improved by Maringer and Parpas 

(2009): 

 

                        min ( ) ( ) (1 ) ( )x p pf x Var r E r                       (8) 

 

    Loukeris et al. (2014a, b), Loukeris et al. (2015a, b) 

emphasized on further higher moments in the model: 

 

minxf(x)=λυγ[bVart(rp)+dKurtt(rp)+fHypKurtt(rp)]-(1-         

               λ)υγ[aEt(rp)+cSkewt(rp)+eHypSkewt(rp)] + s
logλν  (9) 

 

                                      1                                        (10) 

  

                                     *

p i ii
r x r                                (11) 

 

where υγ the company’s financial health, ετ the heuristic output 

(0 healthy, 1distressed), s the social effect of non-rational 

features, as gender, local proximity, day of week, weather, 

frequency of trading, preference of on-line trading etc., ri
* 

the 

return of stock i in the efficient. The stocks do not fulfill all 

the superiority conditions are non-optimal and are exempted 

from the efficient frontier. As  

 

        E(UP(w, λ)) = max{∑i[1 + exp(ri xi)]
1-υγ/λ

/(1-υγ/λ)}/Ν  (19)  

 

let  

 

                                         Vart
2
(rp) = z                                 (12) 

 

                                       Vart(Rt+1)= y                                  (13) 

 

 as  

                                         z = y
2 
= σ

4
                                    (14) 

 

then 

 

minx f(x) = λυγVart(rp)[b + dz + fz
2
] - (1-λ)υγ[aμ + cΕ(xi-μ)y +             

                                  eΕ(xi-μ)y
2
] + s

logλν                             (15) 

 

The novel contribution is that we extract hidden weighted 

social and financial patterns that can make the difference on 

the stock’s evaluation. The frequency of turbulence in the 

markets is more compatible to the FMH, because of the 

extended amount of noise that causes chaotic patterns and the 

numerous manipulation attempts from other agents. The 

manipulation of stocks because of internal information is 

filtered. The evaluation υγ, in (10) is more important than the 

investor’s behavior, because of the reverse influence in υγ/λ. 

The flow chart of processes is described in figure 1. 

 

C. The Intelligent Portfolio Performance Optimisation System 

– IPPOS 

The Intelligent Portfolio Performance Optimisation System -

IPPOS on the first step reads the fundamentals, the accounting 

data, the market prices, the preferred optimisation period t, 

and the social sentiments of investors. 

In parallel the social sentiments of investors are evaluated 

between them to define common patterns.  

Then if there are common patterns the sentiments are 

compared to the stock price that are refereed to and are 

available, in time j during processing. 

If they agree then the evaluation of data is preceded by hybrid 

models, else the sentiments are rejected and new data are 

examined starting the process from the first step. 

Then it proceeds by selecting the initial method to evaluate the 

companies whose stocks are candidate in the portfolio. On this 



step the individual investor’s risk profile is given and the λ is 

selected for the Isoelastic utility.  

On the next step the system examines if this is the last firm to 

be examined, and if the condition for the optimal portfolio as 

an efficient portfolio is satisfied. Else we proceed on the next 

the initial evaluation uses a fast Neural Net that gives very 

accurate evaluations, and creates two subsets: Subset A of the 

healthy companies, and Subset B of the distressed firms. In the 

specific model we select the Jordan Elman Neural Net of 1 

hidden layer that converges in 4 seconds only. The ετ,Ν value is 

calculated 0, for the healthy and 1 for the distressed firms. 

Both firms of subsets A, and B are re-evaluated in a double 

precision process, by a Hybrid neuro-genetic model of higher 

performance. Value ετ,H is calculated identically through the 

Hybrid net and it is compared to ετ,Ν. 

Next step these values are compared and if ετ,Ν = ετ,H then the 

decision is final, else the firm is in vague profile and it is re-

evaluated in future after more data are available, and cleared.  

If ετ,Ν = ετ,H = 1 then the firm is a verified distressed firm and it 

is removed from the overall portfolio, else if ετ,Ν = ετ,H = 0 then 

it is a verified healthy firm and it is included on the Subset C 

of the healthy firms that are candidate for the optimal efficient 

portfolio.  

On the next step the Ut(Rt(i)) utility function of (22) is 

calculated per firm.  

Next firms are ranked according to their utility score. 

Then the Efficient Frontier is calculated. 

Next the firms with the higher utility score are selected into 

the efficient portfolio.    

The sub-optimal firms as well as the non-optimal firms are 

revaluated with potential new data on the step 4 of Neural 

Nets evaluation, following all the steps.  

Next after the efficient portfolio is created, its Utility Function 

is calculated UPj(f).  

Then the optimal overall portfolio U*Pj(f) whose utility is the 

maximum available, is detected, if possible, by all the 

available efficient portfolios utilities UPj(f) recorded in 

U*Pj(f)> UPj(f). 

The process stops when the time limit is reached and the 

IPSOS has the optimal portfolio.  

The flow chart of the IPSPS is in figure 1: 

 

 
Figure 1. the IPPOS model  
 

C.A. The initial processing phase  



C.A.A Partially Recurrent Neural Networks 

I. THE GENERALIZED FEEDFORWARD NEURAL NETWORKS  

The Generalized FeedForward (GFF) neural networks are a 

generic form of the MLP whose the connections are able to 

jump over one or more of the all subsequent layers. The 

GFFs converge on the solutions much more efficiently than 

the ordinary MLP model. Usually the MLP requires 

hundreds of times more training epochs than the GFF neural 

network in the same number of neurons. Thus GFFs are 

more attractive in complex problems of vast data. 
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Fig. 1 The Generalised Feed Forward Network 

 

                                                                                                       

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

Fig. 2 The Hybrid Generalised Feed Forward Net of GA optimization into 
the inputs only       
 

II. THE GENETIC ALGORITHMS IN THE GENERALIZED 

FEEDFORWARD HYBRIDS 

The importance of each one of the 16 financial inputs in the 

Generalised FeedForwards is calculated through the Genetic 

Algorithms, on the Hybrids. They are trained multiple times 

to detect the inputs of the lowest error. The Genetic 

Algorithms are elaborated in four different hybrid models of 

different topologies: i) on the inputs layer only, ii) on the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 The Hybrid Generalised Feed Forward Net of GA optimization into 
the inputs and outputs only       
 
 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 4. The Hybrid Generalised Feed Forward Net of GA optimization 
and Cross Validation in all the layers  

 

inputs and outputs layers only, iii) into all the layers, iv) into 

all the layers with cross validation. 

The Batch learning updates the weights of the GFFs, after 

the presentation of the entire training set. The Genetic 

Algorithms solved the problem of optimal values in all the 

hidden layers and the output in: a) the Step Size and b) the 

Momentum Rate. 
The GFFs require multiple training to achieve the lowest 

error. In numerous models the Cross Validation was used 

that monitors the error on an independent set of data and 

stops training when this error begins to increase. Thus the 

status of best generalization is achieved. 
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III. THE JORDAN ELMAN NEURAL NETWORKS 

A. Partially Recurrent Neural Networks 

The Partially Recurrent Networks are MLPs where few 

recurrent connections are created. The input layer of 

Partially Recurrent Networks includes the inputs, and the 

state neurons, that have memory on past actions and have 

outputs from one of the layers delayed by one step. Internal 

states, are a short-term memory [6]. The Partial Recurrent 

Networks are i) the Jordan network, ii) the Elman network 

and iii) the Multi –Step Recurrent network.   

B. The Jordan Network 

The Jordan neural nets [7], [8], include the context 

neurons that receive a copy from the output neurons and  

 

                                                                                                       Context Units 
 

 
 

 

 
 

 

 
 

Fig. 1 The single layer Jordan Net-[Left], The Multilayer Jordan Net, λ є 

[0, 1]-[Right]  
 

them. The recurrent connections from the output to the 

context neurons have an associated parameter of constant 

value: m є (0, 1).     

C. The Elman Network 

The Elman nets [9], have the context neurons that 

receive a copy of the networks’ hidden neurons and these 

connections do not need to associate any parameter. The 

number of the context neurons is the same to the number of 

hidden neurons into the network. The rest activations are 

calculated similarly as in the MLP.                                                                                                                                           

D. The Multi-Step Recurrent network  

The Multi-Step recurrent network, [10], has feedback 

connections directed from the output neuron to input layer. 

The context neurons memorise previous outputs of the 

network.  

 

Figure 2. The single layer Elman Net (1990)-Left, The Multilayer Elman 

Net (1990)-Right 

E. The Jordan Elman Networks  

The Jordan and Elman (JE), nets extend the MLP in the 

context units neurons that remember past activity. They 

offer the ability of extracting temporal information from the 

data. There are 4 topologies that feed the context units. 

Topology I provide the context units with the inputs, and 

builds a robust past substratum of the input by its memory 

traces. The topology II follows the Elman’s method and 

builds memory traces from the initial layer. Topology III 

uses the past of the last hidden layer outputs as input to the 

context units. Topology IV uses Jordan’s technique taking 

the past of the output to create the memory traces. We 

implement the topology I.  

IV. THE GENETIC ALGORITHMS IN THE JORDAN-ELMAN HYBRIDS 

The significance on each one of the 16 financial inputs in all 

the JE nets is calculated through the Genetic Algorithms, on 

the Hybrid models only. These models are trained multiple 

times to detect the inputs combination that produces the 

lowest error. The GAs are elaborated in four different hybrid 

models of different topologies: i) on the inputs layer only, ii) 

on the inputs and outputs layers only, iii) into all the layers, 

iv) into all the layers with cross validation,  

The Batch learning was preferred to update the weights of 

hybrid neuro-genetic JE, after the presentation of the entire 

training set. The GAs also resolved the problem of optimal 

values in all the hidden layers and the output in: i)    the Step 

Size and ii)    the Momentum Rate. The JE nets require 

multiple training to achieve the lowest error.  

A. Training Jordan & Elmans and the linear systems theory 

The training process for Jordan and Elman networks is:  

1. Activations of the context neurons are initialized at 

0 on the first instant. 

2. External input (x(t)...,x(t-d)) at instant t and 

neurons context activations are sequenced to 

determine the input vector u(t) to the network, 

which is propagated towards the output, giving a 

prediction at instant t+1.  

3. The back propagation algorithm is applied to 

modify networks weights  

4. Time variable is increased by 1 and the procedure 

returns to step 2  

 
             Topology I                           Topology II 

 
            Topology III                                      Topology IV 

                           
Figure 3. Processing in Jordan and Elman nets under the 4 different 

topologies 

 
C.A.F The Genetic Algorithms in the Jordan-Elman Hybrids 

          The significance on each one of the 16 financial 

inputs in all the Jordan Elman networks is calculated 

through the Genetic Algorithms, on the Hybrid models only. 

These models are trained multiple times to detect the inputs 

combination that produces the lowest error. The Genetic 

Algorithms are elaborated in four different hybrid models of 

Context 

Units 



different topologies: i) on the inputs layer only, ii) on the 

inputs and outputs layers only, iii) into all the layers, iv) into 

all the layers with cross validation. The Batch learning was 

preferred to update the weights of hybrid neuro-genetic JE, 

after the presentation of the entire training set. The Genetic 

Algorithms also resolved the problem of optimal values in 

all the hidden layers and the output in: i) the Step Size and 

ii) the Momentum Rate. JE nets require multiple training to 

achieve the lowest error.  

V. DATA  

Data came by 1411 companies from the loan department of 

a Greek commercial bank, with the following 16 financial 

indices, Courtis (1978):  

1) EBIT/Total Assets,  

2) Net Income/Net Worth,  

3) Sales/Total Assets,  

4) Gross Profit/Total Assets,  

5) Net Income/Working Capital,  

6)Net Worth/Total Liabilities  

7)Total Liabilities/Total assets,  

8) Long Term Liabilities /(Long Term Liabilities + Net 

Worth),  

9)Quick Assets/Current Liabilities  

10)(Quick Assets-Inventories)/Current Liabilities,  

11)Floating Assets/Current Liabilities,  

12)Current Liabilities/Net Worth, 

13) Cash Flow/Total Assets,  

14)Total Liabilities/Working Capital,  

15)Working Capital/Total Assets,  

16) Inventories/Quick Assets,  

and a 17th index with initial classification, done by bank 

executives. Test set was 50% of overall data, and training 

set 50%.  Multiple combinations were chosen to detect the 

performance of the GFF models:  

 

i) GFF Neural Nets,  

ii) GFF Neural Nets with Cross Validation, 

iii) GFF Nets with GA in input layer only, 

iv) GFF Nets with GA in input and output layers only, 

v) GFF Nets with GA in all layers, 

vi) GFF Nets with GA in all layers and Cross Validation.  

Whilst for the JE networks we had:  

vii)    JE Neural Nets, 

viii) JE Neural Nets with Cross Validation, 

ix) JE Nets with GA in input layer only, 

x) JE Nets with GA in input and output layers only, 

xi) JE Nets with GA in all layers, 

xii) JE Nets with GA in all layers and Cross Validation. 

 

V. RESULTS 

The most optimal performance overall wass observed on the 

Jordan Elman Hybrid models of GA optimization on the 

input and outputs only of 1 layer where the healthy firms 

were correctly classified at 99.83% and the distressed at 

96.78%, a very low error as MSE was 0.022, the NMSE at 

0.052, and the error 3.83%, whilst the fitness of the data to 

the model was excellent as the correlations coefficient r was 

the highest 0.973, the model was also impartial as the 

Akaike was very low at -2481.73, and the processing time 

quite fast at 55 m. 18 s. The second place was taken by the 

JE Hybrid models of GA optimization on the input and 

outputs only no hidden layer with an excellent classification

 
TABLE I. Overall ranking of the optimal Generalized FeedForwards 

 

TABLE II. Overall ranking of the optimal Jordan Elman models 

 

 

 

 

 

Table 4. Optimal GFF Overall ranking Active Confusion Matrix Performance Time 

                       Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL  

GFF input-outp GA                  1 98,90 1,085 11,465 88,52 0,072 0,1705 0,908 5.776 -1907,09 -1796,44 3h 19’ 25’’ 
GFF  GA all 3 97,14 2,845 17,885 82,10 0,128 0,304 0,834 8,3435 40259,12 284,345 4h 20’ 25’’ 
 1 97,56 2,425 18,805 81,18 0,133 0,3155 0,8275 8,2435 -723,475 -271,82 3h 19’ 25’ 

GFF  GA all, 7 96,64 3,35 19,26 80,73 0,136 0,323 0,825 9,119 1541,07 3429,31 25h 46’ 34’’ 

CV  98,32 1,67 29,355 70,63 0,149 0,3535 0,8125 7,073 1608,295 3495,495  
GFF NN 1 97,73 2,26 21,095 78,89 0,138 0,328 0,8215 9,6755 -1225,82 -1111,95 14’’ 

GFF NN, CV 8 98,23 1,755 26,14 73,85 0,143 0,338 0,814 9,2845 709,44 2041,355 1’ 03’’ 

CV  98,23 1,755 26,14 73,85 0,143 0,338 0,814 9,2845 709,44 2041,355  

GFF GA inputs 10 97,98 2,005 26,6 73,16 0,144 0,341 0,8125 9,4695 1219,39 2873,695 7h 44’ 32’’ 

GFF GA all 8 98,57 1,42 26,6 73,39 0,140 0,3295 0,8215 8,329 1262,655 2959,695 29h 50’ 17’’ 

GFF  GA all, 1 97,98 2,005 24,305 75,68 0,145 0,343 0,8105 8,646 -1219,07 -1126,3 2h 27’ 41’’ 

Table 4. Optimal JE Overall ranking Active Confusion Matrix Performance Time 

                       Layers 0→0 0→1 1→0 1→1 MSE NMSE r %error AIC MDL  

JE input-output GA 1 99.83 0.16 3.20 96.78 0.022 0.052 0.983 3836 -2481.7 -2355.07 55’ 18’’ 
JE input-output GA 0 99.91 0.08 3.66 96.32 0.031 0.075 0.978 4955.5 -2416.6 -2398.1 57’ 29’’ 

Jordan Elman NN 1 99.91 0.08 3.20 96.78 0.022 0.053 0.972 37.603 -2407.8 -2212.1 4’’ 

J Elman GA all, 2 99.66 0.33 5.50 94.49 0.023 0.055 0.972 1572.26 -2439.5 -2287.3 2h 35’29’’ 
CV  99.83 0.16 0.91 99.08 0.023 0.056 0.971 28.511 -2425.7 -2273.5  

J Elman GA all 1 99.83 0.16 5.50 94.49 0.026 0.062 0.970 4127.5 -2378.5 -2263.3 1h 38’53’’ 

J.Elman NN, CV 2 100 0 6.42 93.57 0.028 0.067 0.966 37.174 -2201.8 -1980.5 8’’ 
CV  100 0 6.42 93.57 0.028 0.067 0.966 37.174 -2201.8 -1980.5  

J Elman GA inputs 1 100 0 8.25 91.74 0.027 0.065 0.966 40.46 -2352.8 -2226.1 20’ 01’’ 

Jordan Elman NN 2 99.91 0.08 4.12 95.86 0.035 0.084 0.960 45.335 -2006.4 -1785.1 5’’ 

J Elman GA inputs 2 99.83 0.16 7.33 92.66 0.039 0.092 0.956 47.15 -2006.0 -1824.9 54’ 24’’ 



TABLE III. Overall ranking of the optimal Generalized FeedForward  

 

at 99.91% for the healthy companies and 96.78% for the 

distressed, the error was very low as well in 0.031 for the 

MSE, 0.075 for the NMSE, in an excellent of the data on the 

model as r was 0.978, and a great impartiality of AIC in -

2416.06, in the fastest time of only 57 m. 29 s., but exposed 

to over-training phenomena. Similar performance on the 

third place had the JE hybrid with GA optimization in all 

layers and Cross Validation in an excellent classification 

outcome of 99.66% for the healthy, 94.49% for the 

distressed firms, a very low error as MSE was 0.023, NMSE 

0.055, the overall error 12.32% in a very high fitness of the 

data to the model on r at 0.972, a great impartiality in 

Akaike at -2439.55, the Cross Validation performance was 

very similar to the model, whilst it protects from over-fitting 

hazard thus this model is the most appropriate for complex 

modelling, and a medium convergence time of 2 h. 35 m. 29 

s., to the JE NN of 1 layer that is exposed to overtraining. 

The GFFs unfortunately had the worst outcomes overall. 

The best performance overall of the Generalised 

FeedForward networks was achieved on the GFF Hybrid 

with GAs on the inputs and outputs only of 1 layer where 

the healthy firms were correctly classified at 98.90% and the 

distressed at 88.52%, a very low error as MSE was 0.072, 

the NMSE at 0.172, and the error 5.67%, very high fitness 

of the data to the model as the correlations coefficient r was 

the highest 0.907, the model was also impartial as the 

Akaike was very low at -1808.33, and the processing time 

quite fast at 3 h 55 min. 18 s. 

 

VI. CONCLUSIONS 

The integrated Intelligent Portfolio Performance 

Optimisation System-IPPOS provides robust approach into 

the real time portfolio selection problem, as it extracts 

hidden patterns, avoiding fraud. The Jordan Elman networks 

have a superior performance that incorporates them in the 

model. Whilst the Hybrid Jordan Elman neuro-genetic on 

the inputs and outputs only of 1 layer is a fine model of 

excellent classification, performance and less processing 

time, in high risk of overfitting, as the Hybrid Jordan Elman 

with GAs in all layers and Cross Validation although in a 

marginal lower rank is the best option in all aspects plus it 

protects from overtraining. Hence the Jordan Elman models 

 

 

offer an excellent nonlinear regression result. 
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