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In this paper, we study a procurement decision model for a take-or-pay contract in the presence of spot market 

trading and storage capability in a dynamic setting using multi-stage stochastic programming. Designing a 

computationally efficient split-variable formulation, we solve the procurement problem and delineate the 

impact of key managerial levers such as take-or-pay contract penalty cost and percentage obligation, net 

convenience yield, and storage capacity on the take-or-pay contract design, valuation, and usage. Furthermore, 

we numerically show the sub-additivity of option value for take-or-pay and storage options, which is highly 

important in option portfolio construction. Practically relevant managerial insights are generated to assist 

decision makers in commodity supply chains to better design, plan and act where spot market price and storage 

uncertainties abound. 
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1. Introduction 

Today's volatile energy markets require more flexibility in supply contract management. 

Especially, natural gas and LNG markets that operate with long term take-or-pay supply 

contracts would appreciate not only price, but also volume flexibility. These concerns have 

been constantly voiced by policy and decision makers in the energy industry not only in US 

or Europe but also Asia, Latin America, and the emerging markets. How is such flexibility 

factored into managerial decisions? What managerial levers can one use in managing supply 

and demand risks as well as storage and price risks along the natural gas supply chains? These 

are some of the critical questions pondered on constantly by decision makers. 

In such an uncertain and complex world, it is interesting to see that buyers of natural gas 

are tied into contracts that can last for decades. For instance, BOTAŞ, Petroleum Pipeline 
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Corporation of Turkey, procures natural gas via Blue Stream Project from Russia in a 25-

year contract. Having longer duration contracts surely encourage these pipelines to be built 

and operated in the first place. Steady stream of procurement is necessary for the seller to 

invest in gas production and transportation. However, due to various uncertainties in the 

market such as weather risk, climate change, and alternative energy sources such as 

renewables, end consumer demand becomes more volatile. Thus, the use of natural gas in 

power generation as well as heating could be lower than previously envisaged. In such cases, 

buyers such as BOTAŞ would be willing to renegotiate the volumes they have to procure via 

the contract as well as the contract prices. 

In this paper, we argue that take-or-pay contracts would create more value in the market 

if the buyer can use the spot market purchasing as well as store the natural gas for future 

consumption even if there is no immediate demand in the market. Thus, it is critical for a 

natural gas buyer that is locked into a take-or-pay contract to consider the procurement from 

the spot market as well as the option for storage in order to minimize its total procurement 

costs during a long-term relationship.  

Therefore, with the strong motivation from the natural gas market, we aim to solve the 

buyer's procurement problem that is locked into a long term take-or-pay contract, yet has 

the option to intelligently use spot market purchasing and the storage. 

The remainder of the paper is organized as follows. Section 2 summarizes the relevant 

previous work and positions our paper in the literature. Section 3 presents the model, two 

alternative formulations of the multi-stage stochastic program, and some structural results. 

Section 4 provides the computational study with key managerial insights. Section 5 concludes 

with discussion and future research directions. 

2. Related Literature 

Our work is related to two separate streams of literature. One is the work in supply chain 

contracts and energy/commodity procurement. The second line of work is the financial and 

real options valuation for multiple, interacting options.  

In supply chain contract and energy procurement literature, the first branch of research 

focuses on spot market trading and storage in commodity procurement and have been 

addressed recently by a number of scholars such as Haksöz and Seshadri (2007), Thompson 

et al. (2009), Secomandi (2010a, 2010b), Devalkar et al. (2011), Goel and Gutierrez (2011), 
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Lai et al. (2010, 2011), Wu et al. (2012), and Secomandi and Kekre (2014). This line of work 

does not consider take-or-pay contracts and its intricacies of which our paper examines. 

On the second branch of work, take-or-pay contracts in the energy industry have been 

addressed by Thompson (1995), Schultz (1997), Creti and Villeneuve (2004), Rodriguez (2008), 

Glachant and Hallack (2009), Wahab and Lee (2011). These papers study the structure of 

take-or-pay contracts in different settings with various goals such as examining the value of 

make-up provisions, contract robustness, and free destination flexibility. However these works 

study neither the storage option nor the spot market trading explicitly in the long term 

dynamics of this type of contract. As an exception, Kaiser and Tumma (2004) present a 

Monte Carlo simulation for binomial lattice valuation of a take-or-pay contract for ethylene 

that addresses the storage and spot price uncertainty. Within this branch, there have also 

been several attempts to employ numerical methods such as stochastic programming 

(Haarbrücker and Kuhn, 2009 and Pflug and Broussev, 2009), Monte-Carlo simulation (Ibáñez, 

2004), and binomial forests (Jaillet et al., 2004). 

In financial and real options literature, the most relevant papers to our work are in the 

area of the valuation of interacting options. In his seminal work, Trigeorgis (1993) studies the 

interactions among multiple real options such as deferral, abandonment, contraction, 

expansion, and switch. Option interactions may increase/decrease (super-additive versus sub-

additive property is shown) the bundled value of the options. Agliardi (2006, 2007) 

demonstrate the value interactions analytically for two (expansion or contraction) options. 

Agliardi (2007) further shows that addressing more than two options is technically doable 

and creates more flexibility, however the mathematical complexity increases due to working 

with nested multinomial cumulative functions. Koussis et al., (2007) tackles the pricing 

problem of sequentially bundled real options utilizing the path-dependent claims approach in 

the take-or-pay contract literature. One recent work by Haksöz and Simsek (2010) in supply 

chain procurement literature models the bundled option value (abandonment and price 

renegotiation options) in the presence of spot market. Our paper is intimately related to the 

bundled option valuation due to having the spot market trading and the storage options on 

top of the take-or-pay contract.  

Given the nature of complexity, we utilize multi-stage stochastic programming (MSP) to 

solve the pricing problem (Birge and Louveaux, 1997). MSP is a well-established approach 
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for decision making under uncertainty especially in application areas such as finance and 

energy (Mulvey et al., 2008 and Gassmann and Ziemba, 2013).  

Our contribution to the literature can be summarized as follows. We provide a procurement 

decision model that amalgamates the aforementioned disparate streams of literature for a 

take-or-pay contract with explicitly examined bundled options (spot market trading and 

storage) in a dynamic setting. 

3. The Model 

We model the dynamic procurement decision of a risk-neutral natural gas buyer who has the 

alternatives of purchasing via a take-or-pay contract or from the spot market as well as 

utilizing a temporal storage while minimizing the expected procurement cost in a multi-period 

setting. The buyer uses a standard take-or-pay contract with a single supplier. In this contract, 

the buyer pays the fixed (but not necessarily constant) contract price every period for the 

quantity purchased. 

Similar to the previous literature, fixed contract prices are assumed to be the forward 

contract prices in our model, which are computed and known ex ante. We denote the forward 

contract price set at time 0 for a purchase at time period n as 
0.n

P . It is a function of the 

spot market price at time 0 and is computed as follows: 

 δ− ∆= ( )

0, 0

r n t

n
P Pe   (1) 

where 
0

P  is the spot market price at time 0, ∆t  is the length of one time period (in years), r 

is the constant annualized risk-free interest rate, and δ  is the constant annualized 

convenience yield net of supplier’s implied storage costs. We assume that the spot market 

prices are stochastic with a general known distribution. 

Net convenience yield, which can be roughly defined as the difference between the future 

value of the spot price and the futures price based on (1), can always be observed and 

computed through market prices. This can be contrasted with the marginal convenience yield, 

which is the economic cost of holding a traded commodity in inventory and includes the cost 

of storage (Pindyck, 2004). Marginal convenience yield cannot be directly observed and, due 

to no-arbitrage, is always nonnegative. Net convenience yield, on the other hand, can become 

negative if the storage costs are relatively higher than the benefits of holding the commodity. 
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Throughout this paper, we utilize this latter definition of convenience yield and analyze its 

impact on the contract price. 

Since the procurement contract is structured with a take-or-pay clause, the buyer has two 

decisions: i) how much it should procure at the fixed contract prices in period n, 
C

n
q , ii) how 

much it should procure from the spot market in period n, 
M

n
q . While making these decisions, 

the buyer is constrained by the maximum quantity to be procured via the contract. Moreover, 

if the buyer does procure less than the obligation of the take-or-pay contract, a penalty cost 

needs to be paid. We denote the remaining contractual obligation of the buyer by ,ToP

n
q where 

∈RToP

n
q  at any time period. The penalty cost paid per unit quantity for the contractual 

obligation not taken is denoted by b, > 0b . 

On the other hand, as opposed to the majority of the previous literature, we incorporate 

an important real-life consideration of storage possibility, where the natural gas can be stored 

by the buyer physically each period during the contract life. That is, the buyer not only 

procures the natural gas for consumption, but also can procure and store for future 

consumptions. Specifically, in each period, the buyer can store 
n

s  amount where +
∈R

n
s . The 

buyer also needs to satisfy the deterministic demand in period n, denoted by 
n

d , where 

+
∈ R

n
d . 

Without the consideration of storage, the problem is equivalent to that in Thompson (1995) 

for unit demand per period and therefore can be solved easily through a dynamic programming 

(DP) setup as the only state variable is the remaining contractual obligation, 
ToP

n
q . However, 

the presence of storage complicates the problem by introducing a second state variable, the 

level of storage, 
n

s . As a result, when storage is costly and limited, DP formulation is no 

longer tractable. For the case of costless and unlimited storage, we analyze the value functions 

in detail and present them in the Appendix, where the aim is to understand the functional 

form in terms of the state variables. 

3.1. MSP Model for Costless and Uncapacitated Storage 

In this section, we assume that the buyer can store the natural gas it procures without 

incurring extra storage cost. This assumption is valid when the storage capacity investment 



 

6 Simsek, Haksöz, and Çakanyıldırım: Optimal Procurement with Take-or-Pay Contracts 

has been already made and thus the cost is sunk. Moreover, the natural gas pipeline network 

needs to be also arranged such that storage is possible during the contract life. Second, we 

assume that the storage capacity is unlimited. This assumption will be relaxed later. 

We model the contract pricing problem as a multi-stage stochastic program that minimizes 

the expected cost of procuring natural gas through the spot market or the take-or-pay contract 

while satisfying the demand. Costless and unlimited storage will not impose an extra 

constraint or a penalty, but it can possibly lead to a less expensive contract value due to the 

possibility of carrying inventory over time, increasing the temporal complexity of the problem. 

In a multi-stage stochastic program, the uncertainty is typically represented through a 

scenario tree. In our case, this representation will apply to the spot market price of natural 

gas. A simple three-period (four-stage) trinomial scenario tree is illustrated in Figure 1. In 

this vertically drawn scenario tree where time progresses in the down direction, node 0 at the 

top represents the current state at time 0 and every other node is a different state of the 

world at the time points labeled on the right. For every step into the future from a given 

state, there are three possible states. Each path connecting the current state to a final state 

corresponds to a scenario. For example, in scenario 4, we observe nodes 1, 5, and 16 in the 

three periods. As a result, there are 40 nodes in total and 27 scenarios. It should be noted 

that a scenario tree can have any discrete-time and discrete-state structure in the form of 

uneven periodicity and unequal branching. 

 
Figure 1 Layout for a three-period scenario tree with three branches per node 

In MSP, this structure not only corresponds to the uncertainty modeling, but also displays 

the decision-making dynamics as well. In other words, at node 0, one decision is made with 

the knowledge of the full distribution represented by 27 scenarios. In the second stage ( = 1t ), 

three alternative decisions are possible in nodes 1, 2, and 3, depending on the realization of 

the first period. These decisions are conditional on the first-stage decision and are made with 

the knowledge of the current state and future distribution (9 scenarios in each case). 
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One can formulate a multi-stage stochastic program on a scenario tree in two ways. The 

first method, called the compact formulation, explicitly focuses on nodes on the tree, where 

decision variables and parameters are defined explicitly for each node. In the split-variable 

formulation, the deterministic problem is replicated for each scenario, regardless of the time 

stage. For a scenario tree as in Figure 1, this would mean having 27 variables for each stage 

on the tree. Clearly, this creates a perfect foresight issue for early stages, as we do not actually 

know what scenario we are in until the final stage. This is addressed by adding the so-called 

non-anticipativity constraints, which sets these early-stage variables equal to each other if 

they correspond to the same node on the tree. For our sample tree, this would mean that 

node 1, encompassing scenarios 1 to 9, will have 9 decision variables, but they are all set equal 

to each other with 8 non-anticipativity constraints. 

3.1.1. Compact Formulation. For a scenario tree with K nodes (excluding the 

initial node labeled as zero) and N periods (i.e., +1N  stages), we define the following decision 

variables and parameters in addition to those defined earlier: 

Parameters 

k
P   Spot price in node k 

π
k
  Probability of node k 

n
f   Discount factor for a cash flow in n periods ( )− ∆= rn te   

k
t  Time stage of node k 

,n k
a  Ancestor of node k in time stage n for ≤

k
n t  ( =

,
k
t k

a k ) 

Variables 

M

k
q   Amount procured in the spot market in node k 

C

k
q  Amount procured via the take-or-pay contract in node k 

k
s   Level of the storage in node k 

The multi-stage stochastic programming model for the price of the contract can be 

formulated as follows: 

MSP1 ( )
,

0,
1 : 1

min
k k n k

k

K N
C M ToP C

k t t k k k k N a
k k t N n

f P q Pq f b q qπ π
+

= ∀ = =

 
× × + + × × − 

 
∑ ∑ ∑   (2) 
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subject to 

 
1,

1, ...,
t k kk

C M

a k k k t
s q q s d k K

−
+ + = + =   (3) 

In addition to the standard non-negativity constraints required for all s, 
Cq , and 

Mq  

variables, we set 
0

0s =  and 
:

0
k

k t N
s

=
=  so that the initial and final storage levels are all zero. 

Ignoring the non-negativity constraints and these zero-level variables, for the scenario tree in 

Figure 1, we would have 90 variables and 39 constraints with the above formulation. Given 

the equality constraints, one could do better by explicitly replacing either 
Cq  or 

Mq  variables 

in the objective function with their equal parts and converting their non-negativity constraints 

to standard inequality constraints. This would reduce the number of variables but increase 

the number of constraints by the number of nodes. This modified formulation is left out due 

to space constraints; however we note that the compact form is not our preferred method 

although it may result in the lowest number of variables and constraints. The split-variable 

formulation (section 3.1.2) requires a larger number of variables and constraints; however, the 

resulting sparse A-matrix can be exploited by decomposition and interior-point algorithms for 

much faster solution times. 

3.1.2. Split-Variable Formulation. For a scenario tree with J scenarios and N 

periods (i.e., +1N  stages), we define the following decision variables and parameters: 

Parameters 

,n j
P   Spot price at time point n in scenario j 

j
π   Probability of scenario j 

,n j
a  Ancestor node for scenario j at time point n 

Variables 

,

M

n j
q   Amount procured in the spot market at time point n in scenario j 

,

C

n j
q  Amount procured via the take-or-pay contract at time point n in scenario j 

,n j
s   Level of the storage at time point n in scenario j 

We can formulate the split-variable MSP as follows: 
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MSP2 ( )0, , , , ,
1 1 1

min
J N N

C M ToP C

j n n n j n j n j N n j
j n n

f P q P q f b q qπ
+

= = =

     + + −      
∑ ∑ ∑   (4) 

subject to 

 
1, , , ,

1,..., ; 1,...,C M

n j n j n j n j n
s q q s d n N j J

−
+ + = + = =   (5) 

 
, , 1 , , 1

1,..., ; 1,..., 1 :C C

n j n j n j n j
q q n N j J a a

+ +
= = = − =   (6) 

 
, , 1 , , 1

1,..., ; 1,..., 1 :M M

n j n j n j n j
q q n N j J a a

+ +
= = = − =   (7) 

In addition to the standard non-negativity constraints, we also set 
0, ,

0
j N j

s s= =  for all 

scenarios to be consistent with the original model. Via the non-anticipativity constraints (6)

and (7), the variables that are on the same node on the scenario tree but belong to different 

scenarios due to splitting take the same values. This is managed by checking the ancestors of 

scenarios on a scenario tree, as controlled by the parameter 
,n j

a . 

To compare the size of the problem in this formulation with the one in the previous section, 

let us focus on the three-period case, where the trinomial model results in a set of 27 scenarios. 

In this case, we would have 216 variables and 81 constraints, excluding the non-anticipativity 

constraints. Clearly, this is a much larger constraint matrix compared to that of the compact 

formulation. The sparsity structure of this matrix is shown in Figure 2. 

 
Figure 2 Constraint matrix structure in the split-variable formulation 

The split-variable model has a significant technical advantage due to the fact that the non-

anticipativity constraints are the only ones linking the scenarios. Without them, each scenario 
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would be a deterministic LP. Therefore, in addition to the obvious modeling advantage, one 

can utilize a decomposition algorithm to exploit this sparse structure to achieve an optimal 

solution faster. Interior-point algorithms also tend to work faster on sparse constraint matrices 

(Lustig et al., 1991). 

3.2. Structural Results 

Before we attempt to analyze the problem numerically, we would like to point out some 

important remarks for the pricing problem we introduced above. Let ( )*

0 0
,rV q s  be the value 

of the contract with costless and uncapacitated storage and take-or-pay clause as in section 

3.1. Then, the contract analyzed in section III.B of Thompson (1995) is a special case of our 

contract. 

More specifically, if we disallow storage ( 0
n
s =  for 0, ...,n N= ) and assume that the 

demand per period is equal to 1 unit ( 1
n

d =  for 1, ...,n N= ), then  

( ) ( )* *

0 0 0
, 0ToP no T ToP

n
V q s V V q= = − , 

where ( )*

0

T ToPV q  is the value of the take-or-pay option as in Thompson (1995) and 
0

noV  is 

any convex combination of the price of the contract without any clauses and the cost of 

satisfying demand only in the spot market, that is 

( )0 0, ,
1 1 1

1
N J N

no

n n n j n n n j
n j n

V f d P f d Pα α π
= = =

  
= × + − ×   

   
∑ ∑ ∑ . 

Next, we analyze the impact of the storage capability in the absence of a take-or-pay 

provision (i.e., the forward contract is enforced). More specifically, if we drop the take-or-pay 

provision and assume a contract only with costless and uncapacitated storage, the optimal 

strategy would depend on the sign of the convenience yield. If 0δ > , it would be optimal to 

have zero storage for any period. The intuition is straightforward. As it is impossible to 

purchase in the spot market, we would be comparing the forward prices in the current period 

with those in the future periods. For 0δ > , 
0, 0, 1

( )n

n n
P PV P

+
>  simply because 

( ) ( )( 1) ( )

0 0 0

r n t r n t r t r n t tPe Pe e Pe eδ δ δ δ− ∆ − + ∆ − ∆ − ∆ − ∆> = . This implies that the value of such a contract 

is equal to 
( )

0, 0 0
1 1 1

N N N
rn t r n t n t

n n n n n
n n n

f d P e Pe d P e dδ δ− ∆ − ∆ − ∆

= = =

= =∑ ∑ ∑ . This result would not change in 

the case of costly and limited storage. Similarly, if 0δ < , it is optimal to purchase everything 
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upfront and fully utilize the storage. In that case, the value of the contract is equal to 

( )

1 0,1 0 0
1 1 1

N N N
r t r t t

n n n
n n n

f P d e Pe d Pe dδ δ− ∆ − ∆ − ∆

= = =

= =∑ ∑ ∑ . If there are costs and limits for storage, then 

the optimal strategy decreases storage utilization and the contract value worsens (i.e., 

increases). 

These results will be useful in analyzing the sub-additivity of the contract in section 4.2. 

4. Computational Results 

In this section, we solve the pricing problem using the multi-stage stochastic programming 

formulation introduced in section 3.1.2. As explained before, this approach yields a sparse A-

matrix, which can be exploited by large-scale LP solvers through various decomposition 

algorithms. One downside of this formulation is that the problem size gets extremely large as 

the number of periods or scenarios increase. This is due to the exponential growth in the size 

of the scenario tree as a function of the number of periods or number of branches per period. 

This so-called curse of dimensionality has been less of a problem due to advances in hardware 

and software infrastructure. 

In our base case, we consider a 4-quarter (= 1-year) supply chain contract1 where the buyer 

has a take-or-pay option that expires at the end of the fourth quarter. We assume that the 

deterministic demand for each quarter is fully met by utilizing the local storage or new 

procurement. If new procurement is to be done, this would be carried out either in the market 

at the prevailing spot prices or through the contract at the forward prices that were set at 

the beginning of the first quarter. As such, the forward prices are deterministic whereas the 

spot prices are stochastic. We assume that the spot prices follow a Geometric Brownian 

Motion as follows: 

 ( )dP
r dt dW

P
δ σ= − +   (8) 

Here, dW is a standard Wiener process, r is the risk-free rate, δ is the convenience yield 

net of storage costs, and σ  is the volatility of spot prices. The constant parameters can be 

                                       

1 A 4-quarter supply chain contract can be also considered as a generic 4-period contract without loss of generality, 

where periods could be considered as one month to a year depending on the specific supply chain in focus. 
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made stochastic and modeled via a system of stochastic processes; however this would 

complicate the numerical approximation procedure and reduce the speed of convergence. 

For the base case, we choose to adopt the parameter values in Thompson (1995), where 

possible, as our model is a generalization of the first type of contract in his work. Table 1 

provides the full set of base case parameter values. 

Table 1 Parameter values for the base case 

Parameter   Value 

Initial spot market price (P0) $1.50/unit 

Demand per quarter (dn) 1 unit 

Contract duration (T) 1 year 

Take-or-pay percentage (ϕ) 50% 

Spot price volatility (σ ) 13% 

Penalty cost multiplier (z) 100% 

Storage cost multiplier (cS) 0 

Annual risk-free rate (r) 6% 

Annual net convenience yield (δ) 2% 

Storage capacity (uS) 100% 

It should be noted that the penalty cost parameter is set to be equal to the forward price 

for the final date times the penalty cost multiplier, that is 
0,

*
N

b z P= . Furthermore, we 

define, the take-or-pay requirement, qToP, as product of the total demand and the take-or-pay 

percentage, that is 
1

*
N

ToP

n
n

q dϕ
=

= ∑ . 

Because a discrete-time scenario tree is required, we adopt the standard binomial lattice 

approach by Cox, Ross, and Rubinstein (1979) to implement (8). We divide each quarter into 

15 time-steps, i.e., each time-step ( τ∆ ) is slightly less than a week. At every time-step, the 

price is multiplied by either u eσ τ∆=  or d e σ τ− ∆= . Since decisions are to be made at the 

end of each quarter, we actually do not need the commodity prices in the interim time-steps. 

On the other hand, this time-granularization helps us enrich the representation of uncertainty 

and reduce the sampling error in the results. Our final four-period scenario tree, thus, has a 

multinomial structure where 16 branches (one more than the number of time-steps, due to 

the lattice) emanate out of each node. This results in 65,636 (=164) scenarios and 69905 nodes. 

We also obtain the scenario probabilities (
j

π ) as a by-product of this procedure. As we are 

pricing an option-embedded contract, we must use the risk-neutral probabilities for each 
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branch on the tree to compute 
j

π . Based on the binomial lattice methodology, the risk-

neutral probability of every price increase in a given time-step is computed as: 

 
( )( ) ( )rRNp e d u d

δ τ− ∆
= − − . 

This base case setup leads to a large scale problem with close to 1.2 million variables and 

slightly more than 1 million equality constraints. However, the A-matrix is quite sparse with 

only about 2.7 million nonzero entries. Therefore, we are able to solve such a large problem 

in less than 5 minutes using Gurobi solver (version 5.6.3) on an Intel Core i7 workstation 

with 8 GB memory. 

4.1. Costless and Uncapacitated Storage 

4.1.1. Valuation of the Take-or-Pay Contract in the Presence of Spot 

Market. We first carry out univariate analyses to investigate the impact of market variables 

and take-or-pay contract specifications on the price of the contract. Figure 3 displays the 

contract value on the vertical axis as a function of these parameters. Interest rate parameter 

varies from 1% to 11%, whereas convenience yield changes between -3% and 7%. The volatility 

of gas prices is assumed to take values between 5% and 55%. Finally, we analyze the 

sensitivity of the contract price to contract terms: percentage of take-or-pay and the penalty 

cost as a percentage of the forward price. These parameters can take any value between 0 

and 100%. For each analysis, all other variables take their base case values in Table 1. 

 
Figure 3 Contract value vs various parameters when storage is costless and uncapacitated 
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We observe that the contract price is most sensitive to the volatility of gas prices and the 

convenience yield. Higher volatility implies a higher option value for the take-or-pay 

characteristic of the contract and therefore reduces the price of the contract compared to a 

plain forward contract. A lower convenience yield results in a more expensive contract. 

Intuitively, a lower convenience yield (especially a negative one) means that the cost of storing 

natural gas embedded in the forward prices is higher. This will make the overall contract 

more expensive even though the local storage is costless and uncapacitated. The risk-free 

interest rate appears to have no impact on the value of the contract. This is due to the two 

conflicting but equal forces that are driven by the interest rates. One is the positive impact 

on the expected future gas prices and the other one is the negative effect on the present value 

of the future cash flows. These two forces appear to cancel each other within the value of the 

contract. 

The contract value increases for higher take-or-pay percentage in a somewhat linear way. 

This is expected given that the value of the option disappears as the take-or-pay requirement 

increases, effectively reducing it to a forward. The impact of the take-or-pay penalty cost 

parameter, which is defined as a percentage of the final period’s forward price, is not 

monotonic. Up to a certain level, a higher penalty cost implies a higher contract value. Beyond 

this level, the impact of the penalty cost levels off, implying that the take-or-pay percentage 

appears to be the dominant factor. 

4.1.2. Contract Usage vis-à-vis Spot Market Trading. Next, we analyze how 

the aforementioned factors influence the optimal decisions. More specifically, we look into 

how the expected contract usage (not abandoning the forward contracts in favor of spot 

markets) changes as a function of these parameters and how, if any, the costless and 

uncapacitated storage is utilized. Figure 4 displays the average percentage of demand that is 

satisfied through the contract in the vertical axis as a univariate function of these parameters 

defined as above. 
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Figure 4 Average forward contract usage vs various parameters when storage is costless and uncapacitated 

We observe that market variables (risk-free rate, volatility, and convenience yield) do not 

have a meaningful impact on the average contract usage. Nevertheless, increasing volatility 

beyond a certain level (25%) slightly decreases the forward contract usage and increases the 

chance of a penalty payment. This happens because the take-or-pay option becomes more 

valuable with higher volatility and early exercise becomes more likely. 

For the relationship between contract usage and take-or-pay parameters, we can see a very 

similar pattern to Figure 3. In other words, take-or-pay percentage has an almost linear effect 

on the contract usage. Interestingly, average contract usage is almost always above the take-

or-pay level except for the 100% case, which is equivalent to a fully enforced forward contract. 

Let’s consider the case where take-or-pay percentage is zero. In this case, forward prices are 

favorable in the majority of the upper part of the scenario tree where spot prices are higher; 

therefore we observe almost 50% contract usage, which corresponds to the risk-neutral 

probability of spot prices being above the forward prices. In other words, when spot price is 

greater than the forward price at a given period, the forward contract is utilized. Therefore, 

the forward contract utilization ratio for a given period is the risk-neutral probability of the 

spot price to exceed the forward price for that period. If these risk-neutral probabilities are 

average over time, we find the average forward contract utilization, which turns out to be 

48.86%. 
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4.1.3. Impact of Take-or-Pay Penalty Cost and Percentage Obligation. 

Take-or-pay penalty cost, on the other hand, has a positive but diminishing impact on the 

average contract usage, leveling off around 72.7%. In order to understand why the penalty 

cost has no impact on the contract value or the average contract usage, we plot how the 

likelihood of paying the penalty changes with respect to this parameter in Figure 5. Clearly, 

a penalty cost above 30% is so high that it will always be optimal to meet the take-or-pay 

percentage in order to avoid this penalty. Hence, without a take-or-pay violation, the contract 

value and the forward usage will always be the same for these values of the penalty cost.  

 
Figure 5 Probability of paying a penalty vs cost of penalty when storage is costless and uncapacitated 

Next, we carry out a bivariate analysis to see if the diminishing level of the penalty cost 

also depends on the take-or-pay percentage. Figure 6 clearly shows that the contract becomes 

fully flexible when either parameter is zero. For any level of take-or-pay percentage, increasing 

the penalty cost beyond 30% has no impact on the contract value or forward usage; however, 

this plateau level increases with the take-or-pay percentage. At the extreme case of 100% 

take-or-pay percentage, when the penalty cost is low enough, we see that average forward 

usage can be less than 100%. However, the usage quickly becomes 100%, that is to say the 

supply chain contract becomes a portfolio of forward contracts, once the penalty cost increases 

beyond 30%. Regardless, in high take-or-pay levels, the benefit of the take-or-pay contract is 
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relatively much higher compared to low take-or-pay levels. The reason for not observing any 

benefits in the case of high penalty costs is that the binomial lattice does not provide low 

enough spot prices to favor not purchasing through the contract and incurring penalties. For 

example, the probability of observing a spot price path that is low enough to beat the forward 

price path in case of a 20% penalty cost multiplier is 0.058. As expected, this value is equal 

to the probability of not satisfying the take-or-pay level of 100% and paying a penalty. This 

probability quickly diminishes to 0.0035 when the penalty cost is increased to 30% and 

becomes 0 when the cost multiplier reaches 70%. Thompson (1995) also documents a similar 

pattern. We note that this managerial insight can be used artfully while designing the penalty 

scheme into the contracts at the negotiation stage (Haksöz, 2013). 

 
Figure 6 Average forward contract usage vs contract parameters when storage is costless and uncapacitated 

4.1.4. Optimal Use of Storage Capacity. Finally, we look into the relationship 

between the five parameters and the utilization of costless and uncapacitated storage. In order 

to do this, we check whether storage is utilized under each scenario and compute the 

probability of those scenarios with positive storage. We find that the convenience yield is the 

only parameter that has an impact on the storage utilization. More specifically, when 

convenience yield is negative, probability of storage utilization becomes 1 and in any other 

case it is zero.2 In order to understand the relationship between the convenience yield and 

                                       

2 The results are available with the authors upon request. 
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storage utilization, we further analyze how the expected number of units in storage varies 

across time for different values of this parameter (Figure 7).  

 
Figure 7 Utilization of costless and uncapacitated storage versus net convenience yield 

We observe in Figure 7 that the storage is never utilized for positive values of the 

convenience yield. When net convenience yield becomes negative, storage becomes a valuable 

option and is significantly utilized in the early stages of the contract duration. More negative 

net convenience yield is equivalent to higher implied storage costs and therefore results in 

higher utilization of costless storage. Although the chart shows positive storage values for 0 

convenience yield, this is actually an arbitrary value as any storage solution gives the same 

contract value (i.e., multiple optima). This phenomenon is explained by the nature of 

convenience yield, which actually is defined net of storage costs in our paper.  

A negative convenience yield suggests that implied storage cost charged by the seller is too 

high (even higher than the risk-free rate). This makes the expected present value of the future 

spot prices (and forward prices) higher than the current spot prices. Therefore, it becomes 

optimal to buy sooner to meet the future demand as the local storage is defined to be costless 

and unlimited.  

On the other hand, when the convenience yield is positive, the implied storage cost is 

relatively cheap and even less than the gross convenience yield, rendering current spot and 

forward prices unfavorable. Therefore, it becomes optimal to meet the demand as it arrives 
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as opposed to utilizing the local storage even though it is free. This result states that the 

convenience yield is one of the strategic levers that should be constantly monitored and 

interpreted correctly in natural gas procurement and trading. 

4.2. Costly and Limited Storage 

In this section, we focus on the cases where the net convenience yield is less than 0 as the 

storage would not be utilized otherwise even when it is costless and uncapacitated. We first 

modify the objective function (4) of the stochastic program in section 3.1.2 to reflect the costly 

storage: 

 ( ) ( )
1

0, , , , , 0, ,
1 1 1 1

min
J N N N

C M ToP C S

j n n n j n j n j N n j n n n j
j n n n

f P q P q f b q q f c P sπ
+

−

= = = =

     + + − +      
∑ ∑ ∑ ∑   (9) 

Next, we add the upper bound on the storage as a percentage of the total demand after 

the first period. 

 
,

2

*
N

S

n j n
n

s u d
=

≤ ∑   (10) 

The storage limit, uS, varies from 100% of the total demand (i.e., uncapacitated) to 0% (no 

storage). Cost multiplier, cS, varies from 0 (costless) to 0.006. This latter value is found by 

trial-and-error to be sufficiently high enough to discourage use of storage. Figure 8 displays 

how the contract value changes with respect to these two parameters for two different values 

of the net convenience yield. On the left, the implied storage costs (charged by the seller) are 

relatively too high compared to the value of holding the commodity for consumption. 

Therefore, costly storage is utilized as soon as the limit is relaxed from zero level. Of course, 

this utilization is reduced (and the contract value deteriorates) as the storage cost increases, 

but the benefits of local storage are visible. On the right, the net convenience yield is still 

negative but closer to zero and the benefits of storage has already begun to diminish. In this 

case, a storage cost multiplier of 0.003 is sufficient to discourage the use of local storage 

regardless of the capacity. Therefore, the contract is often reduced to a standard take-or-pay. 
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Figure 8 Contract value vs storage parameters 

We have so far shown that the presence of local storage enhances the value of the 

procurement contract we introduced in section 3. However, if 0δ > , we have observed that 

regardless of the presence of a take-or-pay clause, ( ) ( )* *

0 0 0
, , 0r r

t
V q s V q s= = . That is to say, 

storage is not utilized even when it is free and unlimited.  

4.2.1. Sub-additivity of Option Value. We next attempt to quantify the sub-

additivity of these two options for the case 0δ < . In other words, the decrease in the value 

of the contract due to take-or-pay option and storage utilization turns out to be less than (or 

equal to) sum of the value of the take-or-pay option and that of the storage. Option value 

sub-additivity is shown for abandonment and price renegotiation options in a bundled option 

structure by Haksöz and Simsek (2010). On the other hand, both Trigeorgis (1993) and 

Agliardi (2006, 2007) demonstrate that option interactions may result in super-additivity 

under certain conditions. Hence, due to emergent structure of option interactions, it is not 

possible ex ante to determine if the combined option value is sub vs. super-additivity. In our 

case, Figure 9 shows that the loss due to the sub-additivity is greater when convenience yield 

is more negative. Furthermore, the storage capacity appears to be a more important 

determinant of this loss compared to cost of storage. For unlimited and costless storage (top 

left corners), the sub-additivity can result in a loss of 10% to 30% of the value of the take-or-

pay option; however, we still have the cheapest contract in this case as shown in Figure 8. 
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Figure 9 Loss due to sub-additivity of storage and take-or-pay vs storage parameters 

5. Conclusions 

In this paper, we provide a beneficial and practically relevant analysis of a take-or-pay 

contract in the presence of spot market and storage capability. We employ the multi-stage 

stochastic programming method in order to explicitly consider various interacting managerial 

levers. Since this study is motivated by the natural gas procurement, managerial insights 

generated would help decision makers in natural gas as well as other commodity supply chains 

to better design, plan and act where spot market price and storage uncertainties abound. 

Solving the multi-stage stochastic program in a dynamic setting by split-variable 

formulation, we demonstrate the impact of major managerial levers on take-or-pay contract 

design, valuation, and usage. In sum, take-or-pay contract penalty cost, take-or-pay 

percentage obligation, net convenience yield, and storage capacity are shown to play key roles 

in this process. Moreover, we numerically show the sub-additivity of the option value, i.e., 

take-or-pay and storage options, such that bundling both options may increase the total value 

less than the sum of individual values, which is an important insight in option portfolio 

construction.  

Our work contributes to amalgamating separate streams of previous research conducted in 

supply chain commodity procurement and valuation of multiple interacting options in a take-

or-pay contract framework. To this end, we do hope that our paper becomes a first step in 

analyzing the real world interactions of take-or-pay contracts, spot market trading, as well as 

storage capabilities as they occur in practice without neglecting the necessary rigorous analysis. 
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Appendix. DP Formulation for Costless and Uncapacitated Storage 

We begin from the very last period, denoted as 1N +  and move backwards in time. 
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First, we begin solving the value function at the end of the horizon. The value function, 

, )( To

N

P

N
V q s  can be expressed as follows: 
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0,N N
P P> 0,C M

N N N N
q q d s⇒ = = − . 

Now, we analyze Case 1 in detail to identify structural properties of the value function.  

The value function, ( , )To

N

P

N
V q s  can be written as follows: 
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This implies that the value function ( , )To

N
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Now, let us express the value function at time period 1N − . We obtain 
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This can be further written as follows by denoting the expected value ( )0,
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as (.)E  to simplify the expressions. 

 1 1 1 0, 1 1 1

1 1

( , ) min { (.)} { (.)}

( ) (.) .

[
]

r C r r M r

N N

ToP To

N N N N

r

N N N

PV q s e bq E q P e b e E q P e E

e d s d E

− − − −
− − − − − −

−
− −

= + − − + −

+ − +
  

We can now characterize the optimal procurement quantities of the contract and the spot 

market using this expression with the constraints given in (13). We have two cases. 
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